Style
Style of Muratiki-Siki-Bu(紫式部むらさきしきぶ)
2008年9月21日星期日
桐 壺 KIRITUBO
KIRITUBO
第一章 光る源氏前史の物語
父帝と母桐壺更衣の物語---いづれの御時にか
御子誕生(一歳)---前の世にも御契りや深かりけむ
若宮の御袴着(三歳)---この御子三つになりたまふ年
母御息所の死去---その年の夏、御息所はかなき心地に
故御息所の葬送---限りあれば、例の作法にをさめたてまつるを
第二章 父帝悲秋の物語
父帝悲しみの日々---はかなく日ごろ過ぎて
靫負命婦の弔問---野分立ちてにはかに肌寒き夕暮れのほど
命婦帰参---命婦は、まだ大殿籠もらせたまはざりけると
第三章 光る源氏の物語
若宮参内(四歳)---月日経て、若宮参りたまひぬ
読書始め(七歳)---今は内裏にのみさぶらひたまふ
高麗人の観相、源姓賜わる---そのころ、高麗人の参れる中に
先代の四宮(藤壺)入内---年月にそへて、御息所の御ことを
源氏、藤壺を思慕---源氏の君は、御あたり去りたまはぬを
源氏元服(十二歳)---この君の御童姿、いと変えまうく思せど
源氏、左大臣家の娘(葵上)と結婚---その夜、大臣の家にまかでさせたまふ
源氏、成人の後---大人になりたまひて後は
1 Opening of the tale of Hikaru-Genji
Father and mother's tragic love---Idure no ohom-toki ni ka
Genji's birth(age 1)---Saki-no-yo ni mo ohom-tigiri ya hukakari kem
Hakama-gi(age 3)---Kono Miko mi-tu ni nari tamahu tosi
Mother's death---Sono tosi no natu, Miyasundokoro, hakanaki kokoti ni wadurahi tamahi te
The funeral---Kagiri are ba, rei no sahohu ni wosame tatematuru wo
2 Mikado's grief
Mikado's grievous days---Hakanaku higoro sugi te
The visit in Fall---Nowaki-dati te, nihaka ni hada samuki yuhu-gure no hodo
Messenger reports to Mikado---Myaubu ha, mada ohotonogomora se tamaha zari keru to
3 Tale of Hikaru-Genji
Genji's return to the Court(age 4)---Tukihi he te, Waka-miya mawiri tamahi nu
A child prodigy(age 7)---Ima ha Uti ni nomi saburahi tamahu
A prophecy by Koma-udo---Sono-koro, Komaudo no mawire ru naka ni
Fujitsubo enters the Court---Tosituki ni sohe te, Miyasumdokoro no ohom-koto wo
Genji falls in love with Fujitsubo---Genzi-no-kimi ha, ohom-atari sari tamaha nu wo
Genji grows up(age 12)---Kono Kimi no ohom-waraha-sugata, ito kahe-ma-uku obose do
Genji gets married to Sadaijin's daughter---Sono yo, Otodo no ohom-sato ni Genzi-no-kimi makade sase tamahu
Genji's life---Otona ni nari tamahi te noti ha
第一章 光る源氏前史の物語
[第一段 父帝と母桐壺更衣の物語]
いづれの御時にか、女御、更衣あまたさぶらひたまひけるなかに、いとやむごとなき際にはあらぬが、すぐれて時めきたまふありけり。
はじめより我はと思ひ上がりたまへる御方がた、めざましきものにおとしめ嫉みたまふ。同じほど、それより下臈の更衣たちは、ましてやすからず。朝夕の宮仕へにつけても、人の心をのみ動かし、恨みを負ふ積もりにやありけむ、いと篤しくなりゆき、もの心細げに里がちなるを、いよいよあかずあはれなるものに思ほして、人のそしりをもえ憚らせたまはず、世のためしにもなりぬべき御もてなしなり。
上達部、上人なども、あいなく目を側めつつ、「いとまばゆき人の御おぼえなり。唐土にも、かかる事の起こりにこそ、世も乱れ、悪しかりけれ」と、やうやう天の下にもあぢきなう、人のもてなやみぐさになりて、楊貴妃の例も引き出でつべくなりゆくに、いとはしたなきこと多かれど、かたじけなき御心ばへのたぐひなきを頼みにてまじらひたまふ。
父の大納言は亡くなりて、母北の方なむいにしへの人のよしあるにて、親うち具し、さしあたりて世のおぼえはなやかなる御方がたにもいたう劣らず、なにごとの儀式をももてなしたまひけれど、とりたててはかばかしき後見しなければ、事ある時は、なほ拠り所なく心細げなり。
[第二段 御子誕生(一歳)]
先の世にも御契りや深かりけむ、世になく清らなる玉の男御子さへ生まれたまひぬ。いつしかと心もとながらせたまひて、急ぎ参らせて御覧ずるに、めづらかなる稚児の御容貌なり。
一の皇子は、右大臣の女御の御腹にて、寄せ重く、疑ひなき儲の君と、世にもてかしづききこゆれど、この御にほひには並びたまふべくもあらざりければ、おほかたのやむごとなき御思ひにて、この君をば、私物に思ほしかしづきたまふこと限りなし。
初めよりおしなべての上宮仕へしたまふべき際にはあらざりき。おぼえいとやむごとなく、上衆めかしけれど、わりなくまつはさせたまふあまりに、さるべき御遊びの折々、何事にもゆゑある事のふしぶしには、まづ参う上らせたまふ。ある時には大殿籠もり過ぐして、やがてさぶらはせたまひなど、あながちに御前去らずもてなさせたまひしほどに、おのづから軽き方にも見えしを、この御子生まれたまひて後は、いと心ことに思ほしおきてたれば、「坊にも、ようせずは、この御子の居たまふべきなめり」と、一の皇子の女御は思し疑へり。人より先に参りたまひて、やむごとなき御思ひなべてならず、皇女たちなどもおはしませば、この御方の御諌めをのみぞ、なほわづらはしう心苦しう思ひきこえさせたまひける。
かしこき御蔭をば頼みきこえながら、落としめ疵を求めたまふ人は多く、わが身はか弱くものはかなきありさまにて、なかなかなるもの思ひをぞしたまふ。御局は桐壺なり。あまたの御方がたを過ぎさせたまひて、ひまなき御前渡りに、人の御心を尽くしたまふも、げにことわりと見えたり。参う上りたまふにも、あまりうちしきる折々は、打橋、渡殿のここかしこの道に、あやしきわざをしつつ、御送り迎への人の衣の裾、堪へがたく、まさなきこともあり。またある時には、え避らぬ馬道の戸を鎖しこめ、こなたかなた心を合はせて、はしたなめわづらはせたまふ時も多かり。事にふれて数知らず苦しきことのみまされば、いといたう思ひわびたるを、いとどあはれと御覧じて、後涼殿にもとよりさぶらひたまふ更衣の曹司を他に移させたまひて、上局に賜はす。その恨みましてやらむ方なし。
[第三段 若宮の御袴着(三歳)]
この御子三つになりたまふ年、御袴着のこと一の宮のたてまつりしに劣らず、内蔵寮、納殿の物を尽くして、いみじうせさせたまふ。それにつけても、世の誹りのみ多かれど、この御子のおよすげもておはする御容貌心ばへありがたくめづらしきまで見えたまふを、え嫉みあへたまはず。ものの心知りたまふ人は、「かかる人も世に出でおはするものなりけり」と、あさましきまで目をおどろかしたまふ。
[第四段 母御息所の死去]
その年の夏、御息所、はかなき心地にわづらひて、まかでなむとしたまふを、暇さらに許させたまはず。年ごろ、常の篤しさになりたまへれば、御目馴れて、「なほしばしこころみよ」とのみのたまはするに、日々に重りたまひて、ただ五六日のほどにいと弱うなれば、母君泣く泣く奏して、まかでさせたてまつりたまふ。かかる折にも、あるまじき恥もこそと心づかひして、御子をば留めたてまつりて、忍びてぞ出でたまふ。
限りあれば、さのみもえ留めさせたまはず、御覧じだに送らぬおぼつかなさを、言ふ方なく思ほさる。いとにほひやかにうつくしげなる人の、いたう面痩せて、いとあはれとものを思ひしみながら、言に出でても聞こえやらず、あるかなきかに消え入りつつものしたまふを御覧ずるに、来し方行く末思し召されず、よろづのことを泣く泣く契りのたまはすれど、御いらへもえ聞こえたまはず、まみなどもいとたゆげにて、いとどなよなよと、我かの気色にて臥したれば、いかさまにと思し召しまどはる。輦車の宣旨などのたまはせても、また入らせたまひて、さらにえ許させたまはず。
「限りあらむ道にも、後れ先立たじと、契らせたまひけるを。さりとも、うち捨てては、え行きやらじ」
とのたまはするを、女もいといみじと、見たてまつりて、
「限りとて別るる道の悲しきに いかまほしきは命なりけり いとかく思ひたまへましかば」
と、息も絶えつつ、聞こえまほしげなることはありげなれど、いと苦しげにたゆげなれば、かくながら、ともかくもならむを御覧じはてむと思し召すに、「今日始むべき祈りども、さるべき人びとうけたまはれる、今宵より」と、聞こえ急がせば、わりなく思ほしながらまかでさせたまふ。
御胸つとふたがりて、つゆまどろまれず、明かしかねさせたまふ。御使の行き交ふほどもなきに、なほいぶせさを限りなくのたまはせつるを、「夜半うち過ぐるほどになむ、絶えはてたまひぬる」とて泣き騒げば、御使もいとあへなくて帰り参りぬ。聞こし召す御心まどひ、何ごとも思し召しわかれず、籠もりおはします。
御子は、かくてもいと御覧ぜまほしけれど、かかるほどにさぶらひたまふ、例なきことなれば、まかでたまひなむとす。何事かあらむとも思したらず、さぶらふ人びとの泣きまどひ、主上も御涙のひまなく流れおはしますを、あやしと見たてまつりたまへるを、よろしきことにだに、かかる別れの悲しからぬはなきわざなるを、ましてあはれに言ふかひなし。
[第五段 故御息所の葬送]
限りあれば、例の作法にをさめたてまつるを、母北の方、同じ煙にのぼりなむと、泣きこがれたまひて、御送りの女房の車に慕ひ乗りたまひて、愛宕といふ所にいといかめしうその作法したるに、おはし着きたる心地、いかばかりかはありけむ。「むなしき御骸を見る見る、なほおはするものと思ふが、いとかひなければ、灰になりたまはむを見たてまつりて、今は亡き人と、ひたぶるに思ひなりなむ」と、さかしうのたまひつれど、車よりも落ちぬべうまろびたまへば、さは思ひつかしと、人びともてわづらひきこゆ。
内裏より御使あり。三位の位贈りたまふよし、勅使来てその宣命読むなむ、悲しきことなりける。女御とだに言はせずなりぬるが、あかず口惜しう思さるれば、いま一階の位をだにと、贈らせたまふなりけり。これにつけても憎みたまふ人びと多かり。もの思ひ知りたまふは、様、容貌などのめでたかりしこと、心ばせのなだらかにめやすく、憎みがたかりしことなど、今ぞ思し出づる。さま悪しき御もてなしゆゑこそ、すげなう嫉みたまひしか、人柄のあはれに情けありし御心を、主上の女房なども恋ひしのびあへり。なくてぞとは、かかる折にやと見えたり。
第二章 父帝悲秋の物語
[第一段 父帝悲しみの日々]
はかなく日ごろ過ぎて、後のわざなどにもこまかにとぶらはせたまふ。ほど経るままに、せむ方なう悲しう思さるるに、御方がたの御宿直なども絶えてしたまはず、ただ涙にひちて明かし暮らさせたまへば、見たてまつる人さへ露けき秋なり。「亡きあとまで、人の胸あくまじかりける人の御おぼえかな」とぞ、弘徽殿などにはなほ許しなうのたまひける。一の宮を見たてまつらせたまふにも、若宮の御恋しさのみ思ほし出でつつ、親しき女房、御乳母などを遣はしつつ、ありさまを聞こし召す。
[第二段 靫負命婦の弔問]
野分立ちて、にはかに肌寒き夕暮のほど、常よりも思し出づること多くて、靫負命婦といふを遣はす。夕月夜のをかしきほどに出だし立てさせたまひて、やがて眺めおはします。かうやうの折は、御遊びなどせさせたまひしに、心ことなる物の音を掻き鳴らし、はかなく聞こえ出づる言の葉も、人よりはことなりしけはひ容貌の、面影につと添ひて思さるるにも、闇の現にはなほ劣りけり。
命婦、かしこに参で着きて、門引き入るるより、けはひあはれなり。やもめ住みなれど、人一人の御かしづきに、とかくつくろひ立てて、めやすきほどにて過ぐしたまひつる、闇に暮れて臥し沈みたまへるほどに、草も高くなり、野分にいとど荒れたる心地して、月影ばかりぞ八重葎にも障はらず差し入りたる。南面に下ろして、母君も、とみにえものものたまはず。
「今までとまりはべるがいと憂きを、かかる御使の蓬生の露分け入りたまふにつけても、いと恥づかしうなむ」
とて、げにえ堪ふまじく泣いたまふ。
「『参りては、いとど心苦しう、心肝も尽くるやうになむ』と、典侍の奏したまひしを、もの思ひたまへ知らぬ心地にも、げにこそいと忍びがたうはべりけれ」
とて、ややためらひて、仰せ言伝へきこゆ。
「『しばしは夢かとのみたどられしを、やうやう思ひ静まるにしも、覚むべき方なく堪へがたきは、いかにすべきわざにかとも、問ひあはすべき人だになきを、忍びては参りたまひなむや。若宮のいとおぼつかなく、露けき中に過ぐしたまふも、心苦しう思さるるを、とく参りたまへ』など、はかばかしうものたまはせやらず、むせかへらせたまひつつ、かつは人も心弱く見たてまつるらむと、思しつつまぬにしもあらぬ御気色の心苦しさに、承り果てぬやうにてなむ、まかではべりぬる」
とて、御文奉る。
「目も見えはべらぬに、かくかしこき仰せ言を光にてなむ」とて、見たまふ。
「ほど経ばすこしうち紛るることもやと、待ち過ぐす月日に添へて、いと忍びがたきはわりなきわざになむ。いはけなき人をいかにと思ひやりつつ、もろともに育まぬおぼつかなさを。今は、なほ昔のかたみになずらへて、ものしたまへ」
など、こまやかに書かせたまへり。
「宮城野の露吹きむすぶ風の音に 小萩がもとを思ひこそやれ」
とあれど、え見たまひ果てず。
「命長さの、いとつらう思ひたまへ知らるるに、松の思はむことだに、恥づかしう思ひたまへはべれば、百敷に行きかひはべらむことは、ましていと憚り多くなむ。かしこき仰せ言をたびたび承りながら、みづからはえなむ思ひたまへたつまじき。若宮は、いかに思ほし知るにか、参りたまはむことをのみなむ思し急ぐめれば、ことわりに悲しう見たてまつりはべるなど、うちうちに思ひたまふるさまを奏したまへ。ゆゆしき身にはべれば、かくておはしますも、忌ま忌ましうかたじけなくなむ」
とのたまふ。宮は大殿籠もりにけり。
「見たてまつりて、くはしう御ありさまも奏しはべらまほしきを、待ちおはしますらむに、夜更けはべりぬべし」とて急ぐ。
「暮れまどふ心の闇も堪へがたき片端をだに、はるくばかりに聞こえまほしうはべるを、私にも心のどかにまかでたまへ。年ごろ、うれしく面だたしきついでにて立ち寄りたまひしものを、かかる御消息にて見たてまつる、返す返すつれなき命にもはべるかな。
生まれし時より、思ふ心ありし人にて、故大納言、いまはとなるまで、『ただ、この人の宮仕への本意、かならず遂げさせたてまつれ。我れ亡くなりぬとて、口惜しう思ひくづほるな』と、返す返す諌めおかれはべりしかば、はかばかしう後見思ふ人もなき交じらひは、なかなかなるべきことと思ひたまへながら、ただかの遺言を違へじとばかりに、出だし立てはべりしを、身に余るまでの御心ざしの、よろづにかたじけなきに、人げなき恥を隠しつつ、交じらひたまふめりつるを、人の嫉み深く積もり、安からぬこと多くなり添ひはべりつるに、横様なるやうにて、つひにかくなりはべりぬれば、かへりてはつらくなむ、かしこき御心ざしを思ひたまへられはべる。これもわりなき心の闇になむ」
と、言ひもやらずむせかへりたまふほどに、夜も更けぬ。
「主上もしかなむ。『我が御心ながら、あながちに人目おどろくばかり思されしも、長かるまじきなりけりと、今はつらかりける人の契りになむ。世にいささかも人の心を曲げたることはあらじと思ふを、ただこの人のゆゑにて、あまたさるまじき人の恨みを負ひし果て果ては、かううち捨てられて、心をさめむ方なきに、いとど人悪ろうかたくなになり果つるも、前の世ゆかしうなむ』とうち返しつつ、御しほたれがちにのみおはします」と語りて尽きせず。泣く泣く、「夜いたう更けぬれば、今宵過ぐさず、御返り奏せむ」と急ぎ参る。
月は入り方の、空清う澄みわたれるに、風いと涼しくなりて、草むらの虫の声ごゑもよほし顔なるも、いと立ち離れにくき草のもとなり。
「鈴虫の声の限りを尽くしても 長き夜あかずふる涙かな」
えも乗りやらず。
「いとどしく虫の音しげき浅茅生に 露置き添ふる雲の上人 かごとも聞こえつべくなむ」
と言はせたまふ。をかしき御贈り物などあるべき折にもあらねば、ただかの御形見にとて、かかる用もやと残したまへりける御装束一領、御髪上げの調度めく物添へたまふ。
若き人びと、悲しきことはさらにも言はず、内裏わたりを朝夕にならひて、いとさうざうしく、主上の御ありさまなど思ひ出できこゆれば、とく参りたまはむことをそそのかしきこゆれど、「かく忌ま忌ましき身の添ひたてまつらむも、いと人聞き憂かるべし、また、見たてまつらでしばしもあらむは、いとうしろめたう」思ひきこえたまひて、すがすがともえ参らせたてまつりたまはぬなりけり。
[第三段 命婦帰参]
命婦は、「まだ大殿籠もらせたまはざりける」と、あはれに見たてまつる。御前の壺前栽のいとおもしろき盛りなるを御覧ずるやうにて、忍びやかに心にくき限りの女房四五人さぶらはせたまひて、御物語せさせたまふなりけり。このころ、明け暮れ御覧ずる長恨歌の御絵、亭子院の描かせたまひて、伊勢、貫之に詠ませたまへる、大和言の葉をも、唐土の詩をも、ただその筋をぞ、枕言にせさせたまふ。いとこまやかにありさま問はせたまふ。あはれなりつること忍びやかに奏す。御返り御覧ずれば、
「いともかしこきは置き所もはべらず。かかる仰せ言につけても、かきくらす乱り心地になむ。
荒き風ふせぎし蔭の枯れしより 小萩がうへぞ静心なき」
などやうに乱りがはしきを、心をさめざりけるほどと御覧じ許すべし。いとかうしも見えじと、思し静むれど、さらにえ忍びあへさせたまはず、御覧じ初めし年月のことさへかき集め、よろづに思し続けられて、「時の間もおぼつかなかりしを、かくても月日は経にけり」と、あさましう思し召さる。
「故大納言の遺言あやまたず、宮仕への本意深くものしたりしよろこびは、かひあるさまにとこそ思ひわたりつれ。言ふかひなしや」とうちのたまはせて、いとあはれに思しやる。「かくても、おのづから若宮など生ひ出でたまはば、さるべきついでもありなむ。命長くとこそ思ひ念ぜめ」
などのたまはす。かの贈り物御覧ぜさす。「亡き人の住処尋ね出でたりけむしるしの釵ならましかば」と思ほすもいとかひなし。
「尋ねゆく幻もがなつてにても 魂のありかをそこと知るべく」
絵に描ける楊貴妃の容貌は、いみじき絵師といへども、筆限りありければいとにほひ少なし。大液芙蓉未央柳も、げに通ひたりし容貌を、唐めいたる装ひはうるはしうこそありけめ、なつかしうらうたげなりしを思し出づるに、花鳥の色にも音にもよそふべき方ぞなき。朝夕の言種に、「翼をならべ、枝を交はさむ」と契らせたまひしに、かなはざりける命のほどぞ、尽きせず恨めしき。
風の音、虫の音につけて、もののみ悲しう思さるるに、弘徽殿には、久しく上の御局にも参う上りたまはず、月のおもしろきに、夜更くるまで遊びをぞしたまふなる。いとすさまじう、ものしと聞こし召す。このごろの御気色を見たてまつる上人、女房などは、かたはらいたしと聞きけり。いとおし立ちかどかどしきところものしたまふ御方にて、ことにもあらず思し消ちてもてなしたまふなるべし。月も入りぬ。
「雲の上も涙にくるる秋の月 いかですむらむ浅茅生の宿」
思し召しやりつつ、灯火をかかげ尽くして起きおはします。右近の司の宿直奏の声聞こゆるは、丑になりぬるなるべし。人目を思して、夜の御殿に入らせたまひても、まどろませたまふことかたし。朝に起きさせたまふとても、「明くるも知らで」と思し出づるにも、なほ朝政は怠らせたまひぬべかめり。
ものなども聞こし召さず、朝餉のけしきばかり触れさせたまひて、大床子の御膳などは、いと遥かに思し召したれば、陪膳にさぶらふ限りは、心苦しき御気色を見たてまつり嘆く。すべて、近うさぶらふ限りは、男女、「いとわりなきわざかな」と言ひ合はせつつ嘆く。「さるべき契りこそはおはしましけめ。そこらの人の誹り、恨みをも憚らせたまはず、この御ことに触れたることをば、道理をも失はせたまひ、今はた、かく世の中のことをも、思ほし捨てたるやうになりゆくは、いとたいだいしきわざなり」と、人の朝廷の例まで引き出で、ささめき嘆きけり。
第三章 光る源氏の物語
[第一段 若宮参内(四歳)]
月日経て、若宮参りたまひぬ。いとどこの世のものならず清らにおよすげたまへれば、いとゆゆしう思したり。
明くる年の春、坊定まりたまふにも、いと引き越さまほしう思せど、御後見すべき人もなく、また世のうけひくまじきことなりければ、なかなか危く思し憚りて、色にも出ださせたまはずなりぬるを、「さばかり思したれど、限りこそありけれ」と、世人も聞こえ、女御も御心落ちゐたまひぬ。
かの御祖母北の方、慰む方なく思し沈みて、おはすらむ所にだに尋ね行かむと願ひたまひししるしにや、つひに亡せたまひぬれば、またこれを悲しび思すこと限りなし。御子六つになりたまふ年なれば、このたびは思し知りて恋ひ泣きたふ。年ごろ馴れ睦びきこえたまひつるを、見たてまつり置く悲しびをなむ、返す返すのたまひける。
[第二段 読書始め(七歳)]
今は内裏にのみさぶらひたまふ。七つになりたまへば、読書始めなどせさせたまひて、世に知らず聡う賢くおはすれば、あまり恐ろしきまで御覧ず。
「今は誰れも誰れもえ憎みたまはじ。母君なくてだにらうたうしたまへ」とて、弘徽殿などにも渡らせたまふ御供には、やがて御簾の内に入れたてまつりたまふ。いみじき武士、仇敵なりとも、見てはうち笑まれぬべきさまのしたまへれば、えさし放ちたまはず。女皇女たち二ところ、この御腹におはしませど、なずらひたまふべきだにぞなかりける。御方々も隠れたまはず、今よりなまめかしう恥づかしげにおはすれば、いとをかしううちとけぬ遊び種に、誰れも誰れも思ひきこえたまへり。
わざとの御学問はさるものにて、琴笛の音にも雲居を響かし、すべて言ひ続けば、ことごとしう、うたてぞなりぬべき人の御さまなりける。
[第三段 高麗人の観相、源姓賜わる]
そのころ、高麗人の参れる中に、かしこき相人ありけるを聞こし召して、宮の内に召さむことは、宇多の帝の御誡めあれば、いみじう忍びて、この御子を鴻臚館に遣はしたり。御後見だちて仕うまつる右大弁の子のやうに思はせて率てたてまつるに、相人驚きて、あまたたび傾きあやしぶ。
「国の親となりて、帝王の上なき位に昇るべき相おはします人の、そなたにて見れば、乱れ憂ふることやあらむ。朝廷の重鎮となりて、天の下を輔くる方にて見れば、またその相違ふべし」と言ふ。
弁も、いと才かしこき博士にて、言ひ交はしたることどもなむ、いと興ありける。文など作り交はして、今日明日帰り去りなむとするに、かくありがたき人に対面したるよろこび、かへりては悲しかるべき心ばへをおもしろく作りたるに、御子もいとあはれなる句を作りたまへるを、限りなうめでたてまつりて、いみじき贈り物どもを捧げたてまつる。朝廷よりも多くの物賜はす。
おのづから事広ごりて、漏らさせたまはねど、春宮の祖父大臣など、いかなることにかと思し疑ひてなむありける。
帝、かしこき御心に、倭相を仰せて、思しよりにける筋なれば、今までこの君を親王にもなさせたまはざりけるを、「相人はまことにかしこかりけり」と思して、「無品の親王の外戚の寄せなきにては漂はさじ。わが御世もいと定めなきを、ただ人にて朝廷の御後見をするなむ、行く先も頼もしげなめること」と思し定めて、いよいよ道々の才を習はさせたまふ。
際ことに賢くて、ただ人にはいとあたらしけれど、親王となりたまひなば、世の疑ひ負ひたまひぬべくものしたまへば、宿曜の賢き道の人に勘へさせたまふにも、同じさまに申せば、源氏になしたてまつるべく思しきおきてたり。
[第四段 先代の四宮(藤壺)入内]
年月に添へて、御息所の御ことを思し忘るる折なし。「慰むや」と、さるべき人びと参らせたまへど、「なずらひに思さるるだにいとかたき世かな」と、疎ましうのみよろづに思しなりぬるに、先帝の四の宮の、御容貌すぐれたまへる聞こえ高くおはします、母后世になくかしづききこえたまふを、主上にさぶらふ典侍は、先帝の御時の人にて、かの宮にも親しう参り馴れたりければ、いはけなくおはしましし時より見たてまつり、今もほの見たてまつりて、「亡せたまひにしに御息所の御容貌に似たまへる人を、三代の宮仕へに伝はりぬるに、え見たてまつりつけぬを、后の宮の姫宮こそ、いとようおぼえて生ひ出でさせたまへりけれ。ありがたき御容貌人になむ」と奏しけるに、「まことにや」と、御心とまりて、ねむごろに聞こえさせたまひけり。
母后、「あな恐ろしや。春宮の女御のいとさがなくて、桐壺の更衣の、あらはにはかなくもてなされにし例もゆゆしう」と、思しつつみて、すがすがしうも思し立たざりけるほどに、后も亡せたまひぬ。
心細きさまにておはしますに、「ただ、わが女皇女たちの同じ列に思ひきこえむ」と、いとねむごろに聞こえさせたまふ。さぶらふ人びと、御後見たち、御兄の兵部卿の親王など、「かく心細くておはしまさむよりは、内裏住みせさせたまひて、御心も慰むべく」など思しなりて、参らせたてまつりたまへり。
藤壺と聞こゆ。げに、御容貌ありさま、あやしきまでぞおぼえたまへる。これは、人の御際まさりて、思ひなしめでたく、人もえおとしめきこえたまはねば、うけばりて飽かぬことなし。かれは、人の許しきこえざりしに、御心ざしあやにくなりしぞかし。思し紛るとはなけれど、おのづから御心移ろひて、こよなう思し慰むやうなるも、あはれなるわざなりけり。
[第五段 源氏、藤壺を思慕]
源氏の君は、御あたり去りたまはぬを、ましてしげく渡らせたまふ御方は、え恥ぢあへたまはず。いづれの御方も、われ人に劣らむと思いたるやはある、とりどりにいとめでたけれど、うち大人びたまへるに、いと若ううつくしげにて、切に隠れたまへど、おのづから漏り見たてまつる。
母御息所も、影だにおぼえたまはぬを、「いとよう似たまへり」と、典侍の聞こえけるを、若き御心地にいとあはれと思ひきこえたまひて、常に参らまほしく、「なづさひ見たてまつらばや」とおぼえたまふ。
主上も限りなき御思ひどちにて、「な疎みたまひそ。あやしくよそへきこえつべき心地なむする。なめしと思さで、らうたくしたまへ。つらつき、まみなどは、いとよう似たりしゆゑ、かよひて見えたまふも、似げなからずなむ」など聞こえつけたまへれば、幼心地にも、はかなき花紅葉につけても心ざしを見えたてまつる。こよなう心寄せきこえたまへれば、弘徽殿の女御、またこの宮とも御仲そばそばしきゆゑ、うち添へて、もとよりの憎さも立ち出でて、ものしと思したり。
世にたぐひなしと見たてまつりたまひ、名高うおはする宮の御容貌にも、なほ匂はしさはたとへむ方なく、うつくしげなるを、世の人、「光る君」と聞こゆ。藤壺ならびたまひて、御おぼえもとりどりなれば、「かかやく日の宮」と聞こゆ。
[第六段 源氏元服(十二歳)]
この君の御童姿、いと変へまうく思せど、十二にて御元服したまふ。居起ち思しいとなみて、限りある事に事を添えさせたまふ。
一年の春宮の御元服、南殿にてありし儀式、よそほしかりし御響きに落とさせたまはず。所々の饗など、内蔵寮、穀倉院など、公事に仕うまつれる、おろそかなることもぞと、とりわき仰せ言ありて、清らを尽くして仕うまつれり。
おはします殿の東の廂、東向きに椅子立てて、冠者の御座、引入の大臣の御座、御前にあり。申の時にて源氏参りたまふ。角髪結ひたまへるつらつき、顔のにほひ、さま変へたまはむこと惜しげなり。大蔵卿、蔵人仕うまつる。いと清らなる御髪を削ぐほど、心苦しげなるを、主上は、「御息所の見ましかば」と、思し出づるに、堪へがたきを、心強く念じかへさせたまふ。
かうぶりしたまひて、御休所にまかでたまひて、御衣奉り替へて、下りて拝したてまつりたまふさまに、皆人涙落としたまふ。帝はた、ましてえ忍びあへたまはず、思し紛るる折もありつる昔のこと、とりかへし悲しく思さる。いとかうきびはなるほどは、あげ劣りやと疑はしく思されつるを、あさましううつくしげさ添ひたまへり。
引入の大臣の皇女腹にただ一人かしづきたまふ御女、春宮よりも御けしきあるを、思しわづらふことありける、この君に奉らむの御心なりけり。内裏にも、御けしき賜はらせたまへりければ、「さらば、この折の後見なかめるを、添ひ臥しにも」ともよほさせたまひければ、さ思したり。
さぶらひにまかでたまひて、人びと大御酒など参るほど、親王たちの御座の末に源氏着きたまへり。大臣気色ばみきこえたまふことあれど、もののつつましきほどにて、ともかくもあへしらひきこえたまはず。
御前より、内侍、宣旨うけたまはり伝へて、大臣参りたまふべき召しあれば、参りたまふ。御禄の物、主上の命婦取りて賜ふ。白き大袿に御衣一領、例のことなり。
御盃のついでに、
「いときなき初元結ひに長き世を 契る心は結びこめつや」
御心ばへありて、おどろかさせたまふ。
「結びつる心も深き元結ひに 濃き紫の色し褪せずは」
と奏して、長橋より下りて舞踏したまふ。
左馬寮の御馬、蔵人所の鷹据ゑて賜はりたまふ。御階のもとに親王たち上達部つらねて、禄ども品々に賜はりたまふ。
その日の御前の折櫃物、籠物など、右大弁なむ承りて仕うまつらせける。屯食、禄の唐櫃どもなど、ところせきまで、春宮の御元服の折にも数まされり。なかなか限りもなくいかめしうなむ。
[第七段 源氏、左大臣家の娘(葵上)と結婚]
その夜、大臣の御里に源氏の君まかでさせたまふ。作法世にめづらしきまで、もてかしづききこえたまへり。いときびはにておはしたるを、ゆゆしううつくしと思ひきこえたまへり。女君はすこし過ぐしたまへるほどに、いと若うおはすれば、似げなく恥づかしと思いたり。
この大臣の御おぼえいとやむごとなきに、母宮、内裏の一つ后腹になむおはしければ、いづ方につけてもいとはなやかなるに、この君さへかくおはし添ひぬれば、春宮の御祖父にて、つひに世の中を知りたまふべき右大臣の御勢ひは、ものにもあらず圧されたまへり。
御子どもあまた腹々にものしたまふ。宮の御腹は、蔵人少将にていと若うをかしきを、右大臣の、御仲はいと好からねど、え見過ぐしたまはで、かしづきたまふ四の君にあはせたまへり。劣らずもてかしづきたるは、あらまほしき御あはひどもになむ。
源氏の君は、主上の常に召しまつはせば、心安く里住みもえしたまはず。心のうちには、ただ藤壺の御ありさまを、類なしと思ひきこえて、「さやうならむ人をこそ見め。似る人なくもおはしけるかな。大殿の君、いとをかしげにかしづかれたる人とは見ゆれど、心にもつかず」おぼえたまひて、幼きほどの心一つにかかりて、いと苦しきまでぞおはしける。
[第八段 源氏、成人の後]
大人になりたまひて後は、ありしやうに御簾の内にも入れたまはず。御遊びの折々、琴笛の音に聞こえかよひ、ほのかなる御声を慰めにて、内裏住みのみ好ましうおぼえたまふ。五六日さぶらひたまひて、大殿に二三日など、絶え絶えにまかでたまへど、ただ今は幼き御ほどに、罪なく思しなして、いとなみかしづききこえたまふ。
御方々の人びと、世の中におしなべたらぬを選りととのへすぐりてさぶらはせたまふ。御心につくべき御遊びをし、おほなおほな思しいたつく。
内裏には、もとの淑景舎を御曹司にて、母御息所の御方の人びとまかで散らずさぶらはせたまふ。
里の殿は、修理職、内匠寮に宣旨下りて、二なう改め造らせたまふ。もとの木立、山のたたずまひ、おもしろき所なりけるを、池の心広くしなして、めでたく造りののしる。
「かかる所に思ふやうならむ人を据ゑて住まばや」とのみ、嘆かしう思しわたる。
「光る君といふ名は、高麗人のめできこえてつけたてまつりける」とぞ、言ひ伝へたるとなむ。
1 Opening of the tale of Hikaru-Genji
[1-1 Father and mother's tragic love]
Idure no ohom-toki ni ka, nyougo, kaui amata saburahi tamahi keru naka ni, ito yamgotonaki kiha ni ha ara nu ga, sugurete tokimeki tamahu ari keri.
Hazime yori ware ha to omohi-agari tamahe ru ohom-kata-gata, mezamasiki mono ni otosime sonemi tamahu. Onazi hodo, sore yori gerahu no kaui-tati ha, masite yasukara zu. Asa-yuhu no miya-dukahe ni tuke te mo, hito no kokoro wo nomi ugokasi, urami wo ohu tumori ni ya ari kem, ito adusiku nari yuki, mono-kokoro-boso-ge ni sato-gati naru wo, iyo-iyo akazu ahare naru mono ni omohosi te, hito no sosiri wo mo e habakara se tamaha zu, yo no tamesi ni mo nari nu beki ohom-motenasi nari.
Kamdatime, uhebito nado mo, ainaku me wo sobame tutu, "Ito mabayuki hito no ohom-oboye nari. Morokosi ni mo, kakaru koto no okori ni koso, yo mo midare, asikari kere" to, yau-yau amenosita ni mo adikinau, hito no mote-nayami-gusa ni nari te, Yaukihi no tamesi mo hiki-ide tu beku nari yuku ni, ito hasitanaki koto ohokare do, katazikenaki mi-kokoro-bahe no taguhinaki wo tanomi nite mazirahi tamahu.
Titi no Dainagon ha nakunari te, haha Kitanokata nam inisihe no yosi aru nite, oya uti-gusi, sasiatari te yo no oboye hanayaka naru ohom-kata-gata ni mo itau otora zu, nani-goto no gisiki wo mo motenasi tamahi kere do, tori-tate te haka-bakasiki usiro-mi si nakere ba, koto aru toki ha, naho yoridokoro naku kokoro-boso-ge nari.
[1-2 Genji's birth(age 1)]
Saki-no-yo ni mo ohom-tigiri ya hukakari kem, yo ni naku kiyora naru tama no wonoko-miko sahe mumare tamahi nu. Itusika to kokoro-motonagara se tamahi te, isogi mawirase te go-ran-zuru ni, meduraka naru tigo no ohom-katati nari.
Iti-no-miko ha, Udaizin-no-nyougo no ohom-hara nite, yose omoku, utagahi naki mauke-no-kimi to, yo ni mote-kasiduki kikoyure do, kono ohom-nihohi ni ha narabi tamahu beku mo ara zari kere ba, ohokata no yamgotonaki ohom-omohi nite, kono Kimi wo-ba, watakusi-mono ni omohosi kasiduki tamahu koto kagiri nasi.
Hazime yori osinabete no uhe-miya-dukahe si tamahu beki kiha ni ha ara zari ki. Oboye ito yamgotonaku, zyauzu-mekasi kere do, warinaku matuhasa se tamahu amari ni, saru-beki ohom-asobi no wori-wori, nani-goto ni mo yuwe aru koto no husi-busi ni ha, madu mau-nobora se tamahu. Aru-toki ni ha ohotono-gomori sugusi te, yagate saburaha se tamahi nado, anagati ni o-mahe sara zu motenasa se tamahi si hodo ni, onodukara karoki kata ni mo miye si wo, kono Miko mumare tamahi te noti ha, ito kokoro koto ni omohosi-oki te tare ba, "Bau ni mo, you-se-zu-ha, kono Miko no wi tamahu beki na' meri." to, Iti-no-Miko-no-Nyougo ha obosi-utagahe ri. Hito yori saki ni mawiri tamahi te, yamgotonaki ohom-omohi nabete nara zu, miko-tati nado mo ohasimase ba, kono ohom-kata no ohom-isame wo nomi zo, naho wadurahasiu kokoro-gurusiu omohi kikoye sase tamahi keru.
Kasikoki mi-kage wo-ba tanomi kikoye nagara, otosime kizu wo motome tamahu hito ha ohoku, waga-mi ha ka-yowaku mono-hakanaki arisama nite, naka-naka naru mono-omohi wo zo si tamahu. Mi-tubone ha Kiritubo nari. Amata no ohom-kata-gata wo sugi sase tamahi te, himanaki o-mahe-watari ni, hito no mi-kokoro wo tukusi tamahu mo, geni kotowari to miye tari. Mau-nobori tamahu ni mo, amari uti-sikiru wori-wori ha, utihasi, watadono no koko-kasiko no miti ni, ayasiki waza wo si tutu, ohom-okuri-mukahe no hito no kinu no suso, tahe gataku, masanaki koto mo ari. Mata aru toki ni ha, e sara-nu medau no to wo sasi-kome, konata-kanata kokoro wo ahase te, hasitaname wadurahase tamahu toki mo ohokari. Koto ni hure te kazu sira zu kurusiki koto nomi masare ba, ito itau omohi-wabi taru wo, itodo ahare to go-ran-zi te, Kourauden ni motoyori saburahi tamahu kaui no zausi wo hoka ni utusa se tamahi te, uhe-tubone ni tamaha su. Sono urami masite yara-m-kata-nasi.
[1-3 Hakama-gi(age 3)]
Kono Miko mi-tu ni nari tamahu tosi, ohom-hakama-gi no koto Iti-no-Miya no tatematuri si ni otora zu, kuradukasa, wosamedono no mono wo tukusi te, imiziu se sase tamahu. Sore ni tuke te mo, yo no sosiri nomi ohokare do, kono Miko no oyosuge mote-ohasuru ohom-katati kokoro-bahe arigataku medurasiki made miye tamahu wo, e sonemi-ahe tamaha zu. Mono no kokoro siri tamahu hito ha, "Kakaru hito mo yo ni ide ohasuru mono nari keri" to, asamasiki made me wo odorokasi tamahu.
[1-4 Mother's death]
Sono tosi no natu, Miyasumdokoro, hakanaki kokoti ni wadurahi tamahi te, makade na m to si tamahu wo, itoma sarani yurusa se tamaha zu. Tosi-goro, tune no adusisa ni nari tamahe re ba, ohom-me nare te, "Naho sibasi kokoromiyo" to nomi notamahasuru ni, hi-bi ni omori tamahi te, tada itu-ka mui-ka no hodo ni ito yowau nare ba, Haha-gimi naku-naku sou-si te, makade sase tatematuri tamahu. Kakaru wori ni mo, aru-maziki hadi mo koso to kokoro-dukahi si te, Miko wo ba todome tatematuri te, sinobi te zo ide tamahu.
Kagiri are ba, sa nomi mo e todome sase tamaha zu, go-ran-zi dani okura nu obotukanasa wo, ihu-kata-naku omohosa ru. Ito nihohi-yaka ni utukusige naru hito no, itau omo yase te, ito ahare to mono wo omohi-simi nagara, koto ni ide te mo kikoye-yara zu, aruka-nakika ni kiye-iri tutu monosi tamahu wo go-ran-zuru ni, kisi-kata yuku-suwe obosi-mesa re zu, yorodu no koto wo naku-naku tigiri notamaha sure do, ohom-irahe mo e kikoye tamaha zu, mami nado mo ito tayu-ge nite, itodo nayo-nayo to, ware-ka no kesiki nite husi tare ba, ika-sama ni to obosi-mesi madoha ru. Teguruma no senzi nado notamahase te mo, mata ira se tamahi te, sarani e yurusa se tamaha zu.
"Kagiri ara m miti ni mo, okure-sakidata zi to, tigira se tamahi keru wo. Sa'ritomo, uti-sute te ha, e yuki-yara zi"
to notamahasuru wo, Womna mo ito imizi to, mi tatematuri te,
"Kagiri tote wakaruru miti no kanasiki ni ika mahosiki ha inoti nari keri Ito kaku omohi tamahe masika ba"
to, iki mo taye tutu, kikoye mahosi-ge naru koto ha ari-ge nare do, ito kurusi-ge ni tayu-ge nare ba, kaku nagara, tomo-kakumo nara m wo go-ran-zi-hate m to obosimesu ni, "Kehu hazimu beki inori-domo, sa'ru-beki hito-bito uketamahare ru, koyohi yori" to, kikoye isogase ba, warinaku omohosi nagara makade sase tamahu.
Ohom-mune tuto hutagari te, tuyu madoroma re zu, akasi-kane sase tamahu. Ohom-tukahi no yuki-kahu hodo mo naki ni, naho ibusesa wo kagirinaku notamahase turu wo, "Yonaka uti-suguru hodo ni nam taye hate tamahi nuru" tote naki sawage ba, ohom-tukahi mo ito ahenaku te kaheri mawiri nu. Kikosimesu mi-kokoro-madohi, nani-goto mo obosimesi-waka re zu, komori ohasimasu.
Miko ha, kakute mo ito go-ran-ze mahosikere do, kakaru hodo ni saburahi tamahu, rei naki koto nare ba, makade tamahi na m to su. Nani-goto ka ara m to mo obosi tara zu, saburahu hito-bito no naki madohi, Uhe mo ohom-namida no hima naku nagare ohasimasu wo, ayasi to mi tatematuri tamahe ru wo, yorosiki koto ni dani, kakaru wakare no kanasikara nu ha naki waza naru wo, masite ahare ni ihukahinasi.
[1-5 The funeral]
Kagiri are ba, rei no sahohu ni wosame tatematuru wo, Haha-kitanokata, onazi keburi ni nobori na m to, naki kogare tamahi te, ohom-okuri no nyoubau no kuruma ni sitahi nori tamahi te, Otagi to ihu tokoro ni ito ikamesiu sono sahohu si taru ni, ohasi tuki taru kokoti, ikabakari ka ha ari kem. "Munasiki ohom-kara wo miru-miru, naho ohasuru mono to omohu ga, ito kahinakere ba, hahi ni nari tamaha m wo mi tatematuri te, ima ha naki hito to, hitaburu ni omohi nari na m" to, sakasiu notamahi ture do, kuruma yori mo oti nu beu marobi tamahe ba, saha omohi tu kasi to, hito-bito mote-wadurahi kikoyu.
Uti yori ohom-tukahi ari. Mi-tu-no-kurawi okuri tamahu yosi, tyokusi ki te sono senmyau yomu nam, kanasiki koto nari keri. Nyougo to dani iha se zu nari nuru ga, aka-zu kutiwosiu obosa rure ba, ima hito-kizami no kurawi wo dani to, okura se tamahu nari keri. Kore ni tuke te mo nikumi tamahu hito-bito ohokari. Mono omohi-siri tamahu ha, sama katati nado no medetakari si koto, kokoro-base no nadaraka ni meyasuku, nikumi gatakari si koto nado, ima zo obosi-iduru. Sama asiki ohom-motenasi yuwe koso, sugenau sonemi tamahi sika, hitogara no ahare ni nasake ari si mi-kokoro wo, uhe-no-nyoubau nado mo kohi sinobi-ahe ri. Naku te zo to ha, kakaru wori ni ya to miye tari.
2 Mikado's grief
[2-1 Mikado's grievous days]
Hakanaku higoro sugi te, noti-no-waza nado ni mo komaka ni toburaha se tamahu. Hodo huru mama ni, semkata-nau kanasiu obosa ruru ni, ohom-kata-gata no ohom-tonowi nado mo tayete si tamaha zu, tada namida ni hiti te akasi-kurasa se tamahe ba, mi tatematuru hito sahe tuyukeki aki nari. "Naki ato made, hito no mune aku mazikari keru hito no ohom-oboye kana!" to zo, Koukiden nado ni ha naho yurusi nau notamahi keru. Iti-no-Miya wo mi tatematura se tamahu ni mo, Waka-Miya no ohom-kohisisa nomi omohosi-ide tutu, sitasiki nyoubau, ohom-menoto nado wo tukahasi tutu, arisama wo kikosimesu.
[2-2 The visit in Fall]
Nowaki-tati te, nihaka ni hada samuki yuhugure no hodo, tune yori mo obosi-iduru koto ohoku te, Yugehi-no-myaubu to ihu wo tukahasu. Yuhudukuyo no wokasiki hodo ni idasi-tate sase tamahi te, yagate nagame ohasimasu. Kau yau no wori ha, ohom-asobi nado se sase tamahi si ni, kokoro-koto naru mono-no-ne wo kaki-narasi, hakanaku kikoye-iduru kotonoha mo, hito yori ha koto nari si kehahi katati no, omokage ni tuto sohi te obosa ruru ni mo, yami-no-ututu ni ha naho otori keri.
Myaubu, kasiko ni ma'de tuki te, kado hiki iruru yori, kehahi ahare nari. Yamome-zumi nare do, hito hitori no ohom-kasiduki ni, tokaku tukurohi-tate te, meyasuki hodo nite sugusi tamahi turu, yami ni kure te husi sidumi tamahe ru hodo ni, kusa mo takaku nari, nowaki ni itodo are taru kokoti si te, tukikage bakari zo yahemugura ni mo sahara zu sasi-iri taru. Minami-omote ni orosi te, Haha-gimi mo, tomi ni e mono mo notamaha zu.
"Ima made tomari haberu ga ito uki wo, kakaru ohom-tukahi no yomogihu no tuyu wake-iri tamahu ni tuke te mo, ito hadukasiu nam."
tote, geni e tahu maziku nai tamahu.
"'Mawiri te ha, itodo kokoro-gurusiu, kokorogimo mo tukuru yau ni nam' to, Naisi-no-suke no sou-si tamahi si wo, mono omohi tamahe sira nu kokoti ni mo, geni koso ito sinobi-gatau haberi kere."
tote, yaya tamerahi te, ohose-goto tutahe kikoyu.
"'Sibasi ha yume ka to nomi tadora re si wo, yau-yau omohi-sidumaru ni simo, samu beki kata naku tahe-gataki ha, ikani su beki waza ni ka to mo, tohi-ahasu beki hito dani naki wo, sinobi te ha mawiri tamahi na m ya? Waka-Miya no ito obotukanaku, tuyu-keki naka ni sugusi tamahu mo, kokoro-gurusiu obosa ruru wo, toku mawiri tamahe!' nado, haka-bakasiu mo notamaha se yara zu, musekahera se tamahi tutu, katuha hito mo kokoro-yowaku mi tatematuru ram to, obosi-tutuma nu ni simo ara nu mi-kesiki no kokoro-gurusisa ni, uketamahari mo hate nu yau nite nam, makade haberi nuru."
tote, ohom-humi tatematuru. "Me mo miye habera nu ni, kaku kasikoki ohose-goto wo hikari nite nam." tote, mi tamahu. "Hodo he ba sukosi uti-magiruru koto mo ya to, mati sugusu tukihi ni sohe te, ito sinobi-gataki ha warinaki waza ni nam. Ihakenaki hito wo ikani to omohi-yari tutu, morotomoni hagukuma nu obotukanasa wo. Ima ha, naho mukasi no katami ni nazurahe te, monosi tamahe."
nado, komayaka ni kaka se tamahe ri.
"Miyagino no tuyu huki musubu kaze no oto ni kohagi ga moto wo omohi koso yare"
to are do, e mi tamahi hate zu.
"Inoti nagasa no, ito turau omohi tamahe sira ruru ni, matu no omoha m koto dani, hadukasiu omohi tamahe habere ba, momosiki ni yuki-kahi habera m koto ha, masite ito habakari ohoku nam. Kasikoki ohose-goto wo tabi-tabi uketamahari nagara, midukara ha e nam omohi tamahe tatu maziki. Waka-Miya ha, ikani omohosi siru ni ka, mawiri tamaha m koto wo nomi nam obosi-isogu mere ba, kotowari ni kanasiu mi tatematuri haberu nado, uti-uti ni omohi tamahuru sama wo sou-si tamahe. Yuyusiki mi ni habere ba, kakute ohasimasu mo, ima-imasiu katazikenaku nam."
to notamahu. Miya ha ohotono-gomori ni keri.
"Mi tatematuri te, kuhasiu ohom-arisama mo sou-si habera mahosiki wo, mati ohasimasu ram ni, yo huke haberi nu besi." tote isogu.
"Kure-madohu kokoro-no-yami mo tahe gataki katahasi wo dani, haruku bakari ni kikoye mahosiu haberu wo, watakusi ni mo kokoro nodoka ni makade tamahe. Tosi-goro, uresiku omo-datasiki tuide nite tati-yori tamahi si mono wo, kakaru ohom-seusoko nite mi tatematuru, kahesu-gahesu turenaki inoti ni mo haberu kana!
Mumare si toki yori, omohu kokoro ari si hito nite, ko-Dainagon, imaha to naru made, 'Tada, kono hito no miya-dukahe no ho'i, kanarazu toge sase tatemature. Ware nakunari nu tote, kutiwosiu omohi kuduhoru na.' to, kahesu-gahesu isame-oka re haberi sika ba, haka-bakasiu usiromi omohu hito mo naki mazirahi ha, naka-naka naru beki koto to omohi tamahe nagara, tada kano yuigon wo tagahe zi to bakari ni, idasi-tate haberi si wo, mi ni amaru made no mi-kokorozasi no, yorodu ni katazikenaki ni, hito-ge-naki hadi wo kakusi tutu, mazirahi tamahu meri turu wo, hito no sonemi hukaku tumori, yasukara nu koto ohoku nari sohi haberi turu ni, yoko-sama naru yau nite, tuhi ni kaku nari haberi nure ba, kaherite ha turaku nam, kasikoki mi-kokorozasi wo omohi tamahe rare haberu. Kore mo warinaki kokoro-no-yami ni nam."
to, ihi mo yara zu musekaheri tamahu hodo ni, yo mo huke nu.
"Uhe mo sika nam. 'Waga mi-kokoro nagara, anagati ni hitome odoroku bakari obosare si mo, nagakaru maziki nari keri to, ima ha turakari keru hito-no-tigiri ni nam. Yoni isasaka mo hito no kokoro wo mage taru koto ha ara zi to omohu wo, tada kono hito no yuwe nite, amata saru-maziki hito no urami wo ohi si hate-hate ha, kau uti-sute rare te, kokoro wosame m kata naki ni, itodo hito warou katakuna ni nari-haturu mo, saki-no-yo yukasiu nam.' to uti-kahesi tutu, ohom-sihotare-gati ni nomi ohasimasu." to katari te tuki se zu. Naku-naku, "Yo itau huke nure ba, koyohi sugusa zu, ohom-kaheri sou-se m" to isogi mawiru.
Tuki ha irigata no, sora kiyou sumi-watare ru ni, kaze ito suzusiku nari te, kusamura no musi no kowe-gowe moyohosi-gaho naru mo, ito tati hanare nikuki kusa no moto nari.
"Suzu-musi no kowe no kagiri wo tukusi te mo nagaki yo aka-zu huru namida kana"
E mo nori-yara zu.
"Itodosiku musi no ne sigeki asadihu ni tuyu oki sohuru kumo no uhe-bito Kagoto mo kikoye tu beku nam."
to iha se tamahu. Wokasiki ohom-okuri-mono nado aru beki wori ni mo ara ne ba, tada kano ohom-katami ni tote, kakaru you mo ya to nokosi tamahe ri keru ohom-syauzoku hito-kudari, mi-gusi-age no teudo-meku mono sohe tamahu.
Wakaki hito-bito, kanasiki koto ha sarani mo iha zu, uti watari wo asayuhu ni narahi te, ito sau-zausiku, Uhe no ohom-arisama nado omohi-ide kikoyure ba, toku mawiri tamaha m koto wo sosonokasi kikoyure do, "Kaku ima-imasiki mi no sohi tatematura m mo, ito hito-giki ukaru besi, mata, mi tatematura de sibasi mo ara m ha, ito usirometau" omohi kikoye tamahi te, suga-suga to mo e mawira se tatematuri tamaha nu nari keri.
[2-3 Messenger reports to Mikado]
Myaubu ha, "Mada ohotono-gomora se tamaha zari keru!" to, ahare ni mi tatematuru. O-mahe no tubo-senzai no ito omosiroki sakari naru wo go-ran-zuru yau nite, sinobiyaka ni kokoro-nikuki kagiri no nyoubau si, go-nin saburaha se tamahi te, ohom-monogatari se sase tamahu nari keri. Kono-koro, akekure go-ran-zuru Tyaugonka no ohom-we, Teizi-no-Win no kaka se tamahi te, Ise, Turayuki ni yoma se tamahe ru, yamato-koto-no-ha wo mo, morokosi no uta wo mo, tada sono sudi wo zo, makura-goto ni se sase tamahu. Ito komayaka ni arisama toha se tamahu. Ahare nari turu koto sinobi-yaka ni sou-su. Ohom-kaheri go-ran-zure ba,
"Ito mo kasikoki ha oki-dokoro mo habera zu. Kakaru ohose-goto ni tuke te mo, kaki-kurasu midari-gokoti ni nam.
Araki kaze husegi si kage no kare si yori Kohagi ga uhe zo sidu-kokoro naki"
nado yau ni midari-gahasiki wo, kokoro wosame zari keru hodo to go-ran-zi yurusu besi. Ito kau simo miye zi to, obosi sidumure do, sarani e sinobi-ahe sase tamaha zu, go-ran-zi hazime si tosi-tuki no koto sahe kaki-atume, yorodu ni obosi tuduke rare te, "Toki no ma mo obotukanakari si wo, kaku te mo tukihi ha he ni keri." to, asamasiu obosi mesa ru.
"Ko-Dainagon no yuigon ayamata zu, miya-dukahe no ho'i hukaku monosi tari si yorokobi ha, kahi aru sama ni to koso omohi-watari ture. Ihukahinasi ya!" to uti-notamahase te, ito ahare ni obosi-yaru. "Kaku te mo, onodukara Waka-Miya nado ohi-ide tamaha ba, saru-beki tuide mo ari na m. Inoti nagaku to koso omohi-nen-ze me."
nado notamahasu. Kano okuri-mono go-ran-ze sasu. "Naki hito no sumika tadune-ide tari kem sirusi no kamzasi nara masika ba." to omohosu mo ito kahinasi.
"Tadune yuku maborosi mogana tute nite mo tama no arika wo soko to siru beku"
We ni kake ru Yaukihi no katati ha, imiziki wesi to ihe do mo, hude kagiri ari kere ba ito nihohi sukunasi. "Taieki-no-huyou Biou-no-yanagi" mo, geni kayohi tari si katati wo, kara-mei taru yosohi ha uruhasiu koso ari keme, natukasiu rauta-ge nari si wo obosi-iduru ni, hana tori no iro ni mo ne ni mo yosohu beki kata zo naki. Asa-yuhu no koto-gusa ni, "Hane wo narabe, eda wo kahasa m" to tigira se tamahi si ni, kanaha zari keru inoti no hodo zo, tukise zu uramesi ki.
Kaze no oto, musi no ne ni tuke te, mono nomi kanasiu obosa ruru ni, Koukiden ni ha, hisasiku uhe-no-mi-tubone ni mo nau-nobori tamaha zu, tuki no omosiroki ni, yo hukuru made asobi wo zo si tamahu naru. Ito susamaziu, monosi to kikosimesu. Kono-goro no mi-kesiki wo mi tatematuru uhe-bito, nyoubau nado ha, kataharaitasi to kiki keri. Ito osi-tati kado-kadosiki tokoro monosi tamahu ohom-kata nite, koto ni mo ara zu obosi-keti te motenasi tamahu naru besi. Tuki mo iri nu.
"Kumo no uhe mo namida ni kururu aki no tuki ikade sumu ram asadihu no yado"
Obosi-mesi-yari tutu, tomosibi wo kakage-tukusi te oki ohasimasu. Ukon-no-tukasa no tonowi-mausi no kowe kikoyuru ha, usi ni nari nuru naru besi. Hito-me wo obosi te, yoru-no-otodo ni ira se tamahi te mo, madoroma se tamahu koto katasi. Asita ni oki sase tamahu tote mo, "Akuru mo sira de" to obosi-iduru ni mo, naho asamaturi-goto ha okotara se tamahi nu beka' meri.
Mono nado mo kikosi-mesa zu, asagarehi no kesiki bakari hure sase tamahi te, daisyauzi no o-mono nado ha, ito haruka ni obosi-mesi tare ba, haizen ni saburahu kagiri ha, kokoro-gurusiki mi-kesiki wo mi tatematuri nageku. Subete, tikau saburahu kagiri ha, wotoko womna, "Ito warinaki waza kana!" to ihi-ahase tutu nageku. "Saru-beki tigiri koso ha ohasimasi keme. Sokora no hito no sosiri, urami wo mo habakara se tamaha zu, kono ohom-koto ni hure taru koto wo ba, dauri wo mo usinaha se tamahi, ima hata, kaku yononaka no koto wo mo, omohosi-sute taru yau ni nari-yuku ha, ito tai-daisiki waza nari." to, hito-no-mikado no tamesi made hiki-ide, sasameki nageki keri.
3 Tale of Hikaru-Genji
[3-1 Genji's return to the Court(age 4)]
Tukihi he te, Waka-Miya mawiri tamahi nu. Itodo konoyo no mono nara zu kiyora ni oyosuke tamahe re ba, ito yuyusiu obosi tari.
Akuru-tosi no haru, bau sadamari tamahu ni mo, ito hiki-kosa mahosiu obose do, ohom-usiromi su beki hito mo naku, mata yo no ukehiku maziki koto nari kere ba, naka-naka ayahuku obosi-habakari te, iro ni mo idasa se tamaha zu nari nuru wo, "Sabakari obosi tare do, kagiri koso ari kere" to, yo-hito mo kikoye, Nyougo mo mi-kokoro oti-wi tamahi nu.
Kano ohom-oba-Kitanokata, nagusamu kata naku obosi-sidumi te, ohasu ram tokoro ni dani tadune-yuka m to negahi tamahi si sirusi ni ya, tuhini use tamahi nure ba, mata kore wo kanasibi-obosu koto kagirinasi. Miko mu-tu ni nari tamahu tosi nare ba, kono tabi ha obosi-siri te kohi-naki tamahu. Tosi-goro nare-mutubi kikoye tamahi turu wo, mi tatematuri oku kanasibi wo nam, kahesu-gahesu notamahi keru.
[3-2 A child prodigy(age 7)]
Ima ha uti ni nomi saburahi tamahu. Nana-tu ni nari tamahe ba, humi-hazime nado se sase tamahi te, yo-ni sira zu satou kasikoku ohasure ba, amari osorosiki made go-ran-zu.
"Ima ha tare mo tare mo e nikumi tamaha zi. Haha-gimi naku te dani rautau si tamahe." tote, Koukiden nado ni mo watara se tamahu ohom-tomo ni ha, yagate mi-su no uti ni ire tatematuri tamahu. Imiziki mononohu, ata kataki nari tomo, mi te ha uti-wema re nu beki sama no si tamahe re ba, e sasi-hanati tamaha zu. Womna-miko-tati huta-tokoro, kono ohom-hara ni ohasimase do, nazurahi tamahu beki dani zo nakari keru. Ohom-kata-gata mo kakure tamaha zu, ima yori namamekasiu hadukasi-ge ni ohasure ba, ito wokasiu utitoke nu asobi-gusa ni, tare mo tare mo omohi kikoye tamahe ri.
Wazato no go-gakumon ha saru mono nite, koto hue no ne ni mo kumowi wo hibikasi, subete ihi-tuduke ba, koto-gotosiu, utate zo nari nu beki hito no ohom-sama nari keru.
[3-3 A prophecy by Koma-udo]
Sono-koro, Komaudo no mawire ru naka ni, kasikoki saunin ari keru wo kikosi-mesi te, miya no uti ni mesa m koto ha, Uda-no-Mikado no ohom-imasime are ba, imiziu sinobi te, kono Miko wo Kourokwan ni tukahasi tari. Ohom-usiromi-dati te tukau maturu Udaiben no ko no yau ni omoha se te wi te tatematuru ni, saunin odoroki te, amata tabi katabuki ayasibu.
"Kuni no oya to nari te, teiwau no kami-naki kurawi ni noboru beki sau ohasimasu hito no, sonata nite mire ba, midare urehuru koto ya ara m? Ohoyake no katame to nari te, ame-no-sita wo tasukuru kata nite mire ba, mata sono sau tagahu besi." to ihu.
Ben mo, ito zae kasikoki hakase nite, ihi-kahasi taru koto-domo nam, ito kyou ari keru. Humi nado tukuri kahasi te, kehu asu kaheri-sari na m to suru ni, kaku arigataki hito ni taimen-si taru yorokobi, kaherite ha kanasikaru beki kokorobahe wo omosiroku tukuri taru ni, Miko mo ito ahare naru ku wo tukuri tamahe ru wo, kagiri nau mede tatematuri te, imiziki okurimono-domo wo sasage tatematuru. Ohoyake yori mo ohoku no mono tamahasu.
Onodukara koto hirogori te, morasa se tamaha ne do, Touguu no ohodi-Otodo nado, ikanaru koto ni ka to obosi-utagahi te nam ari keru.
Mikado, kasikoki mi-kokoro ni, yamatosau wo ohose te, obosiyori ni keru sudi nare ba, ima made kono Kimi wo miko ni mo nasa se tamaha zari keru wo, "Saunin ha makotoni kasikokari keri." to obosi te, "Mu-hon-no-sinwau no gesyaku no yose naki nite ha tadayohasa zi. Waga mi-yo mo ito sadamenaki wo, tadaudo nite ohoyake no ohom-usiromi wo suru nam, yuku-saki mo tanomosige na' meru koto." to obosi-sadame te, iyo-iyo miti-miti no zae wo narahasa se tamahu.
Kiha kotoni kasikoku te, tadaudo ni ha ito atarasikere do, miko to nari tamahi na ba, yo no utagahi ohi tamahi nu beku monosi tamahe ba, sukueu no kasikoki miti no hito ni kamgahe sase tamahu ni mo, onazi sama ni mause ba, Genzi ni nasi tatematuru beku obosi-okite tari.
[3-4 Fujitsubo enters the Court]
Tosituki ni sohe te, Miyasumdokoro no ohom-koto wo obosi-wasururu wori nasi. "Nagusamu ya?" to, sa'ru-beki hito-bito mawira se tamahe do, "Nazurahi ni obosa ruru dani ito kataki yo kana!" to, utomasiu nomi yorodu ni obosi-nari nuru ni, Sendai-no-Si-no-Miya no, ohom-katati sugure tamahe ru kikoye takaku ohasimasu, Haha-Gisaki yoni naku kasiduki kikoye tamahu wo, Uhe ni saburahu Naisi-no-suke ha, Sendai no ohom-toki no hito nite, kano miya ni mo sitasiu mawiri nare tari kere ba, ihakenaku ohasimasi si toki yori mi tatematuri, ima mo hono-mi tatematuri te, "Use tamahi ni si Miyasumdokoro no ohom-katati ni ni tamahe ru hito wo, sam-dai no miya-dukahe ni tutahari nuru ni, e mi tatematuri tuke nu wo, Kisai-no-Miya-no-Hime-Miya koso ito you oboye te ohi-ide sase tamahe ri kere. Arigataki ohom-katati-bito ni nam." to sou-si keru ni, "Makoto ni ya?" to, mi-kokoro tomari te, nemgoro ni kikoye sase tamahi keri.
Haha-Gisaki, "Ana osorosi ya! Touguu-no-Nyougo no ito saganaku te, Kiritubo-no-Kaui no, araha ni hakanaku motenasa re ni si tamesi mo yuyusiu." to, obosi-tutumi te, suga-sugasiu mo obosi-tata zari keru hodo ni, Kisaki mo use tamahi nu.
Kokoro-bosoki sama nite ohasimasu ni, "Tada, waga Womna-Miko-tati no onazi tura ni omohi kikoye m." to, ito nemgoro ni kikoyesase tamahu. Saburahu hito-bito, ohom-usiromi-tati, ohom-seuto no Hyaubukyau-no-Miko nado, "Kaku kokoro-bosoku te ohasimasa m yori ha, uti-zumi se sase tamahi te, mi-kokoro mo nagusamu beku." nado obosi-nari te, mawira se tatematuri tamahe ri.
Huditubo to kikoyu. Geni, ohom-katati arisama ayasiki made zo oboye tamahe ru. Kore ha, hito no ohom-kiha masari te, omohinasi medetaku, hito mo e otosime kikoye tamaha ne ba, ukebari te aka nu koto nasi. Kare ha, hito no yurusi kikoye zari si ni, mi-kokorozasi ayaniku nari si zo kasi. Obosi-magiru to ha nakere do, onodukara mi-kokoro uturohi te, koyonau obosi-nagusamu yau naru mo, ahare naru waza nari keri.
[3-5 Genji falls in love with Fujitsubo]
Genzi-no-Kimi ha, ohom-atari sari tamaha nu wo, masite sigeku watara se tamahu ohom-kata ha, e hadi-ahe tamaha zu. Idure no ohom-kata mo, ware hito ni otora m to oboi taru yaha aru, tori-dori ni ito medetakere do, uti-otonabi tamahe ru ni, ito wakau utukusige nite, seti ni kakure tamahe do, onodukara mori mi tatematuru.
Haha-Miyasumdokoro mo, kage dani oboye tamaha nu wo, "Ito you ni tamahe ri" to, Naisi-no-suke no kikoye keru wo, wakaki mi-kokoti ni ito ahare to omohi kikoye tamahi te, tune ni mawira mahosiku, "Nadusahi mi tatetematura baya!" to oboye tamahu.
Uhe mo kagirinaki ohom-omohi-doti nite, "Na utomi tamahi so. Ayasiku yosohe kikoye tu beki kokoti nam suru. Namesi to obosa de, rautaku si tamahe. Turatuki, mami nado ha, ito you ni tari si yuwe, kayohi te miye tamahu mo, nigenakara zu nam." nado kikoye-tuke tamahe re ba, wosana-gokoti ni mo, hakanaki hana momidi ni tuke te mo kokorozasi wo miye tatematuru. Koyonau kokoro-yose kikoye tamahe re ba, Koukiden-no-Nyougo, mata kono Miya to mo ohom-naka soba-sobasiki yuwe, uti-sohe te moto-yori no nikusa mo tati-ide te, monosi to obosi tari.
Yo ni taguhi nasi to mi tatematuri tamahi, nadakau ohasuru Miya no ohom-katati ni mo, naho nihohasisa ha tatohe m kata naku, utukusige naru wo, yo-no-hito, "Hikaru-Kimi" to kikoyu. Huditubo narabi tamahi te, ohom-oboye mo tori-dori nare ba, "Kakayaku-Hi-no-Miya" to kikoyu.
[3-6 Genji grows up(age 12)]
Kono Kimi no ohom-waraha-sugata, ito kahe-ma-uku obose do, zihu-ni nite go-genpuku si tamahu. Wi-tati obosi-itonami te, kagiri aru koto ni koto wo sohe sase tamahu.
Hito-tose no Touguu no go-genpuku, Na'den nite ari si gisiki, yosohosikari si ohom-hibiki ni otosa se tamaha zu. Tokoro-dokoro no kyau nado, kuradukasa, kokusauwin nado, ohoyakegoto ni tukaumature ru, orosoka naru koto mozo to, toriwaki ohosegoto ari te, kiyora wo tukusi te tukaumature ri.
Ohasimasu den no himgasi no hisasi, himgasi-muki ni isi tate te, kwanza no go-za, Hikiire-no-Otodo no go-za, o-mahe ni ari. Saru no toki nite Genzi mawiri tamahu. Midura yuhi tamahe ru turatuki, kaho no nihohi, sama kahe tamaha m koto wosige nari. Ohokurakyau, Kurabito tukaumaturu. Ito kiyora naru mi-gusi wo sogu hodo, kokoro-gurusi-ge naru wo, Uhe ha, "Miyasumdokoro no mi masika ba." to, obosi-iduru ni, tahe gataki wo, kokoro-duyoku nenzi-kahesa se tamahu.
Kauburi si tamahi te, ohom-yasumi-dokoro ni makade tamahi te, ohom-zo tatematuri-kahe te, ori te hai-si tatematuri tamahu sama ni, mina-hito namida otosi tamahu. Mikado hata, masite e sinobi-ahe tamaha zu, obosi-magiruru wori mo ari turu mukasi no koto, tori-kahesi kanasiku obosa ru. Ito kau kibiha naru hodo ha, age-otori ya to utagahasiku obosare turu wo, asamasiu utukusigesa sohi tamahe ri.
Hikiire-no-Otodo no miko-bara ni tada hitori kasiduki tamahu ohom-musume, Touguu yori mo mi-kesiki aru wo, obosi-wadurahu koto ari keru, kono Kimi ni tatematura m no mi-kokoro nari keri. Uti ni mo, mi-kesiki tamahara se tamahe ri kere ba, "Sa'ra ba, kono wori no usiromi naka' meru wo, sohibusi ni mo." to moyohosa se tamahi kere ba, sa obosi tari.
Saburahi ni makade tamahi te, hito-bito ohomiki nado mawiru hodo, miko-tati no ohom-za no suwe ni Genzi tuki tamahe ri. Otodo kesikibami kikoye tamahu koto are do, mono no tutumasiki hodo nite, tomo-kakumo ahe-sirahi kikoye tamaha zu.
O-mahe yori, Naisi, senzi uketamahari tutahe te, Otodo mawiri tamahu beki mesi are ba, mawiri tamahu. Ohom-roku no mono, Uhe-no-Myaubu tori te tamahu. Siroki oho-utiki ni ohom-zo hito-kudari, rei no koto nari.
Ohom-sakaduki no tuide ni,
"Itokinaki hatu-motoyuhi ni nagaki yo wo tigiru kokoro ha musubi kome tu ya?"
Mi-kokorobahe ari te, odoroka sase tamahu.
"Musubi turu kokoro mo hukaki motoyuhi ni koki murasaki no iro si ase zuha!"
to sou-si te, nagahasi yori ori te butahu si tamahu.
Hidari-no-tukasa no ohom-muma, kuraudo-dokoro no taka suwe te tamahari tamahu. Mi-hasi no moto ni miko-tati kamdatime turane te, roku-domo sina-zina ni tamahari tamahu.
Sono hi no o-mahe no woribitu-mono, komono nado, U-daiben nam uketamahari te tukaumatura se keru. Tonziki, roku no karabitu-domo nado, tokoroseki made, Touguu no go-genpuku no wori ni mo kazu masare ri. Naka-naka kagiri mo naku ikamesiu nam.
[3-7 Genji gets married to Sadaijin's daughter]
Sono yo, Otodo no ohom-sato ni Genzi-no-Kimi makade sase tamahu. Sahohu yo ni medurasiki made, mote-kasiduki kikoye tamahe ri. Ito kibiha nite ohasi taru wo, yuyusiu utukusi to omohi kikoye tamahe ri. Womna-gimi ha sukosi sugusi tamahe ru hodo ni, ito wakau ohasure ba, nigenaku hadukasi to oboi tari.
Kono Otodo no ohom-oboye ito yamgotonaki ni, haha-Miya, Uti no hito-tu-kisai-bara ni nam ohasi kere ba, idu-kata ni tuke te mo ito hanayaka naru ni, kono Kimi sahe kaku ohasi sohi nure ba, Touguu no ohom-ohodi nite, tuhini yononaka wo siri tamahu beki Migi-no-Otodo no ohom-ikihoi ha, mono ni mo ara zu osa re tamahe ri.
Miko-domo amata hara-bara ni monosi tamahu. Miya no ohom-hara ha, Kuraudo-no-seusyau nite ito wakau wokasiki wo, Migi-no-Otodo no, ohom-naka ha ito yokara ne do, e mi-sugusi tamaha de, kasiduki tamahu Si-no-Kimi ni ahase tamahe ri. Otora zu mote-kasiduki taru ha, aramahosiki ohom-ahahi-domo ni nam.
Genzi-no-Kimi ha, Uhe no tune ni mesi-matuhase ba, kokoro-yasuku sato-zumi mo e si tamaha zu. Kokoro no uti ni ha, tada Huditubo no ohom-arisama wo, taguhinasi to omohi kikoye te, "Sayau nara m hito wo koso mi me. Niru hito naku mo ohasi keru kana! Ohoidono-no-Kimi, ito wokasige ni kasiduka re taru hito to ha miyure do, kokoro ni mo tuka zu." oboye tamahi te, wosanaki hodo no kokoro hito-tu ni kakari te, ito kurusiki made zo ohasi keru.
[3-8 Genji's life]
Otona ni nari tamahi te noti ha, arisi yau ni mi-su no uti ni mo ire tamaha zu. Ohom-asobi no wori-wori, koto hue no ne ni kikoye kayohi, honoka naru ohom-kowe wo nagusame nite, uti-zumi nomi konomasiu oboye tamahu. Itu-ka mui-ka saburahi tamahi te, Ohoi-dono ni hutu-ka mi-ka nado, taye-daye ni makade tamahe do, tada ima ha, wosanaki ohom-hodo ni, tumi naku obosi-nasi te, itonami kasiduki kikoye tamahu.
Ohom-kata-gata no hito-bito, yononaka ni osinabe tara nu wo eri totonohe suguri te saburaha se tamahu. Mi-kokoro ni tuku beki ohom-asobi wo si, ohona-ohona obosi itatuku.
Uti ni ha, moto no Sigeisya wo ohom-zausi nite, haha-miyasumdokoro no ohom-kata no hito-bito makade tira zu saburaha se tamahu.
Sato no tono ha, syurisiki, takumi-dukasa ni senzi kudari te, ni-nau aratame tukura se tamahu. Moto no kodati, yama no tatazumahi, omosiroki tokoro nari keru wo, ike no kokoro hiroku si-nasi te, medetaku tukuri nonosiru.
"Kakaru tokoro ni omohu yau nara m hito wo suwe te suma baya!" to nomi, nagekasiu obosi wataru.
"Hikaru-Kimi to ihu na ha, Komaudo no mede kikoye te tuke tatematuri keru." to zo, ihi-tutahe taru to nam.
2008年4月15日星期二
Manifesto of the Communist Party
Where is the party in opposition that has not been decried as communistic by its opponents in power? Where is the opposition that has not hurled back the branding reproach of communism, against the more advanced opposition parties, as well as against its reactionary adversaries?
Two things result from this fact:
I. Communism is already acknowledged by all European powers to be itself a power.
II. It is high time that Communists should openly, in the face of the whole world, publish their views, their aims, their tendencies, and meet this nursery tale of the spectre of communism with a manifesto of the party itself.
To this end, Communists of various nationalities have assembled in London and sketched the following manifesto, to be published in the English, French, German, Italian, Flemish and Danish languages.
2007年11月3日星期六
DNA
What is DNA?
DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all other organisms. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).
The information in DNA is stored as a code made up of four chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T). Human DNA consists of about 3 billion bases, and more than 99 percent of those bases are the same in all people. The order, or sequence, of these bases determines the information available for building and maintaining an organism, similar to the way in which letters of the alphabet appear in a certain order to form words and sentences.
DNA bases pair up with each other, A with T and C with G, to form units called base pairs. Each base is also attached to a sugar molecule and a phosphate molecule. Together, a base, sugar, and phosphate are called a nucleotide. Nucleotides are arranged in two long strands that form a spiral called a double helix. The structure of the double helix is somewhat like a ladder, with the base pairs forming the ladder’s rungs and the sugar and phosphate molecules forming the vertical sidepieces of the ladder.
An important property of DNA is that it can replicate, or make copies of itself. Each strand of DNA in the double helix can serve as a pattern for duplicating the sequence of bases. This is critical when cells divide because each new cell needs to have an exact copy of the DNA present in the old cell.
DNA is a double helix formed by base pairs attached to a sugar-phosphate backbone.
What is DNA?
We all know that elephants only give birth to little elephants, giraffes to giraffes, dogs to dogs and so on for every type of living creature. But why is this so?
The answer lies in a molecule called deoxyribonucleic acid (DNA), which contains the biological instructions that make each species unique. DNA, along with the instructions it contains, is passed from adult organisms to their offspring during reproduction.
Where is DNA found?
DNA is found inside a special area of the cell called the nucleus. Because the cell is very small, and because organisms have many DNA molecules per cell, each DNA molecule must be tightly packaged. This packaged form of the DNA is called a chromosome.
DNA spends a lot of time in its chromosome form. But during cell division, DNA unwinds so it can be copied and the copies transferred to new cells. DNA also unwinds so that its instructions can be used to make proteins and for other biological processes.
Researchers refer to DNA found in the cell's nucleus as nuclear DNA. An organism's complete set of nuclear DNA is called its genome.
Besides the DNA located in the nucleus, humans and other complex organisms also have a small amount of DNA in cell structures known as mitochondria. Mitochondria generate the energy the cell needs to function properly.
In sexual reproduction, organisms inherit half of their nuclear DNA from the male parent and half from the female parent. However, organisms inherit all of their mitochondrial DNA from the female parent. This occurs because only egg cells, and not sperm cells, keep their mitochondria during fertilization.
What is DNA made of?
DNA is made of chemical building blocks called nucleotides. These building blocks are made of three parts: a phosphate group, a sugar group and one of four types of nitrogen bases. To form a strand of DNA, nucleotides are linked into chains, with the phosphate and sugar groups alternating.
The four types of nitrogen bases found in nucleotides are: adenine (A), , thymine (T), guanine (G) and cytosine (C). The order, or sequence, of these bases determines what biological instructions are contained in a strand of DNA. For example, the sequence ATCGTT might instruct for blue eyes, while ATCGCT might instruct for brown.
Each DNA sequence that contains instructions to make a protein is known as a gene. The size of a gene may vary greatly, ranging from about 1,000 bases to 1 million bases in humans.
The complete DNA instruction book, or genome, for a human contains about 3 billion bases and about 20,000 genes on 23 pairs of chromosomes.
What does DNA do?
DNA contains the instructions needed for an organism to develop, survive and reproduce. To carry out these functions, DNA sequences must be converted into messages that can be used to produce proteins, which are the complex molecules that do most of the work in our bodies.
How are DNA sequences used to make proteins?
DNA's instructions are used to make proteins in a two-step process. First, enzymes read the information in a DNA molecule and transcribe it into an intermediary molecule called messenger ribonucleic acid, or mRNA.
Next, the information contained in the mRNA molecule is translated into the "language" of amino acids, which are the building blocks of proteins. This language tells the cell's protein-making machinery the precise order in which to link the amino acids to produce a specific protein. This is a major task because there are 20 types of amino acids, which can be placed in many different orders to form a wide variety of proteins.
Who discovered DNA?
The German biochemist Frederich Miescher first observed DNA in the late 1800s. But nearly a century passed from that discovery until researchers unraveled the structure of the DNA molecule and realized its central importance to biology.
For many years, scientists debated which molecule carried life's biological instructions. Most thought that DNA was too simple a molecule to play such a critical role. Instead, they argued that proteins were more likely to carry out this vital function because of their greater complexity and wider variety of forms.
The importance of DNA became clear in 1953 thanks to the work of James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin. By studying X-ray diffraction patterns and building models, the scientists figured out the double helix structure of DNA - a structure that enables it to carry biological information from one generation to the next.
What is the DNA double helix?
Scientist use the term "double helix" to describe DNA's winding, two-stranded chemical structure. This shape - which looks much like a twisted ladder - gives DNA the power to pass along biological instructions with great precision.
To understand DNA's double helix from a chemical standpoint, picture the sides of the ladder as strands of alternating sugar and phosphate groups - strands that run in opposite directions. Each "rung" of the ladder is made up of two nitrogen bases, paired together by hydrogen bonds. Because of the highly specific nature of this type of chemical pairing, base A always pairs with base T, and likewise C with G. So, if you know the sequence of the bases on one strand of a DNA double helix, it is a simple matter to figure out the sequence of bases on the other strand.
DNA's unique structure enables the molecule to copy itself during cell division. When a cell prepares to divide, the DNA helix splits down the middle and becomes two single strands. These single strands serve as templates for building two new, double-stranded DNA molecules - each a replica of the original DNA molecule. In this process, an A base is added wherever there is a T, a C where there is a G, and so on until all of the bases once again have partners.
In addition, when proteins are being made, the double helix unwinds to allow a single strand of DNA to serve as a template. This template strand is then transcribed into mRNA, which is a molecule that conveys vital instructions to the cell's protein-making machinery.
WHAT IS A GENOME? | |||||||||||||||||||||||||
Life is specified by genomes. Every organism, including humans, has a genome that contains all of the biological information needed to build and maintain a living example of that organism. The biological information contained in a genome is encoded in its deoxyribonucleic acid (DNA) and is divided into discrete units called genes. Genes code for proteins that attach to the genome at the appropriate positions and switch on a series of reactions called gene expression. | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
The Physical Structure of the Human Genome | |||||||||||||||||||||||||
Nuclear DNAInside each of our cells lies a nucleus, a membrane-bounded region that provides a sanctuary for genetic information. The nucleus contains long strands of DNA that encode this genetic information. A DNA chain is made up of four chemical bases: adenine (A) and guanine (G), which are called purines, and cytosine (C) and thymine (T), referred to as pyrimidines. Each base has a slightly different composition, or combination of oxygen, carbon, nitrogen, and hydrogen. In a DNA chain, every base is attached to a sugar molecule (deoxyribose) and a phosphate molecule, resulting in a nucleic acid or nucleotide. Individual nucleotides are linked through the phosphate group, and it is the precise order, or sequence, of nucleotides that determines the product made from that gene. | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Figure 1. The four DNA bases. | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
The DNA that constitutes a gene is a double-stranded molecule consisting of two chains running in opposite directions. The chemical nature of the bases in double-stranded DNA creates a slight twisting force that gives DNA its characteristic gently coiled structure, known as the double helix. The two strands are connected to each other by chemical pairing of each base on one strand to a specific partner on the other strand. Adenine (A) pairs with thymine (T), and guanine (G) pairs with cytosine (C). Thus, A-T and G-C base pairs are said to be complementary. This complementary base pairing is what makes DNA a suitable molecule for carrying our genetic information—one strand of DNA can act as a template to direct the synthesis of a complementary strand. In this way, the information in a DNA sequence is readily copied and passed on to the next generation of cells. | |||||||||||||||||||||||||
Organelle DNANot all genetic information is found in nuclear DNA. Both plants and animals have an organelle—a "little organ" within the cell— called the mitochondrion. Each mitochondrion has its own set of genes. Plants also have a second organelle, the chloroplast, which also has its own DNA. Cells often have multiple mitochondria, particularly cells requiring lots of energy, such as active muscle cells. This is because mitochondria are responsible for converting the energy stored in macromolecules into a form usable by the cell, namely, the adenosine triphosphate (ATP) molecule. Thus, they are often referred to as the power generators of the cell. Unlike nuclear DNA (the DNA found within the nucleus of a cell), half of which comes from our mother and half from our father, mitochondrial DNA is only inherited from our mother. This is because mitochondria are only found in the female gametes or "eggs" of sexually reproducing animals, not in the male gamete, or sperm. Mitochondrial DNA also does not recombine; there is no shuffling of genes from one generation to the other, as there is with nuclear genes. | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Why Is There a Separate Mitochondrial Genome?The energy-conversion process that takes place in the mitochondria takes place aerobically, in the presence of oxygen. Other energy conversion processes in the cell take place anaerobically, or without oxygen. The independent aerobic function of these organelles is thought to have evolved from bacteria that lived inside of other simple organisms in a mutually beneficial, or symbiotic, relationship, providing them with aerobic capacity. Through the process of evolution, these tiny organisms became incorporated into the cell, and their genetic systems and cellular functions became integrated to form a single functioning cellular unit. Because mitochondria have their own DNA, RNA, and ribosomes, this scenario is quite possible. This theory is also supported by the existence of a eukaryotic organism, called the amoeba, which lacks mitochondria. Therefore, amoeba must always have a symbiotic relationship with an aerobic bacterium. | |||||||||||||||||||||||||
Why Study Mitochondria?There are many diseases caused by mutations in mitochondrial DNA (mtDNA). Because the mitochondria produce energy in cells, symptoms of mitochondrial diseases often involve degeneration or functional failure of tissue. For example, mtDNA mutations have been identified in some forms of diabetes, deafness, and certain inherited heart diseases. In addition, mutations in mtDNA are able to accumulate throughout an individual's lifetime. This is different from mutations in nuclear DNA, which has sophisticated repair mechanisms to limit the accumulation of mutations. Mitochondrial DNA mutations can also concentrate in the mitochondria of specific tissues. A variety of deadly diseases are attributable to a large number of accumulated mutations in mitochondria. There is even a theory, the Mitochondrial Theory of Aging, that suggests that accumulation of mutations in mitochondria contributes to, or drives, the aging process. These defects are associated with Parkinson's and Alzheimer's disease, although it is not known whether the defects actually cause or are a direct result of the diseases. However, evidence suggests that the mutations contribute to the progression of both diseases. In addition to the critical cellular energy-related functions, mitochondrial genes are useful to evolutionary biologists because of their maternal inheritance and high rate of mutation. By studying patterns of mutations, scientists are able to reconstruct patterns of migration and evolution within and between species. For example, mtDNA analysis has been used to trace the migration of people from Asia across the Bering Strait to North and South America. It has also been used to identify an ancient maternal lineage from which modern man evolved. | |||||||||||||||||||||||||
Ribonucleic Acids
Just like DNA, ribonucleic acid (RNA) is a chain, or polymer, of nucleotides with the same 5' to 3' direction of its strands. However, the ribose sugar component of RNA is slightly different chemically than that of DNA. RNA has a 2' oxygen atom that is not present in DNA. Other fundamental structural differences exist. For example, uracil takes the place of the thymine nucleotide found in DNA, and RNA is, for the most part, a single-stranded molecule. DNA directs the synthesis of a variety of RNA molecules, each with a unique role in cellular function. For example, all genes that code for proteins are first made into an RNA strand in the nucleus called a messenger RNA (mRNA). The mRNA carries the information encoded in DNA out of the nucleus to the protein assembly machinery, called the ribosome, in the cytoplasm. The ribosome complex uses mRNA as a template to synthesize the exact protein coded for by the gene. | |||||||||||||||||||||||||
Proteins
Although DNA is the carrier of genetic information in a cell, proteins do the bulk of the work. Proteins are long chains containing as many as 20 different kinds of amino acids. Each cell contains thousands of different proteins: enzymes that make new molecules and catalyze nearly all chemical processes in cells; structural components that give cells their shape and help them move; hormones that transmit signals throughout the body; antibodies that recognize foreign molecules; and transport molecules that carry oxygen. The genetic code carried by DNA is what specifies the order and number of amino acids and, therefore, the shape and function of the protein. | |||||||||||||||||||||||||
The "Central Dogma"—a fundamental principle of molecular biology—states that genetic information flows from DNA to RNA to protein. Ultimately, however, the genetic code resides in DNA because only DNA is passed from generation to generation. Yet, in the process of making a protein, the encoded information must be faithfully transmitted first to RNA then to protein. Transferring the code from DNA to RNA is a fairly straightforward process called transcription. Deciphering the code in the resulting mRNA is a little more complex. It first requires that the mRNA leave the nucleus and associate with a large complex of specialized RNAs and proteins that, collectively, are called the ribosome. Here the mRNA is translated into protein by decoding the mRNA sequence in blocks of three RNA bases, called codons, where each codon specifies a particular amino acid. In this way, the ribosomal complex builds a protein one amino acid at a time, with the order of amino acids determined precisely by the order of the codons in the mRNA. | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
A given amino acid can have more than one codon. These redundant codons usually differ at the third position. For example, the amino acid serine is encoded by UCU, UCC, UCA, and/or UCG. This redundancy is key to accommodating mutations that occur naturally as DNA is replicated and new cells are produced. By allowing some of the random changes in DNA to have no effect on the ultimate protein sequence, a sort of genetic safety net is created. Some codons do not code for an amino acid at all but instruct the ribosome when to stop adding new amino acids. | |||||||||||||||||||||||||
Table 1. RNA triplet codons and their corresponding amino acids.
| |||||||||||||||||||||||||
A translation chart of the 64 RNA codons. | |||||||||||||||||||||||||
The Core Gene Sequence: Introns and ExonsGenes make up about 1 percent of the total DNA in our genome. In the human genome, the coding portions of a gene, called exons, are interrupted by intervening sequences, called introns. In addition, a eukaryotic gene does not code for a protein in one continuous stretch of DNA. Both exons and introns are "transcribed" into mRNA, but before it is transported to the ribosome, the primary mRNA transcript is edited. This editing process removes the introns, joins the exons together, and adds unique features to each end of the transcript to make a "mature" mRNA. One might then ask what the purpose of an intron is if it is spliced out after it is transcribed? It is still unclear what all the functions of introns are, but scientists believe that some serve as the site for recombination, the process by which progeny derive a combination of genes different from that of either parent, resulting in novel genes with new combinations of exons, the key to evolution. | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Figure 2. Recombination. | |||||||||||||||||||||||||
Gene Prediction Using ComputersWhen the complete mRNA sequence for a gene is known, computer programs are used to align the mRNA sequence with the appropriate region of the genomic DNA sequence. This provides a reliable indication of the beginning and end of the coding region for that gene. In the absence of a complete mRNA sequence, the boundaries can be estimated by ever-improving, but still inexact, gene prediction software. The problem is the lack of a single sequence pattern that indicates the beginning or end of a eukaryotic gene. Fortunately, the middle of a gene, referred to as the core gene sequence--has enough consistent features to allow more reliable predictions. | |||||||||||||||||||||||||
From Genes to Proteins: Start to Finish | |||||||||||||||||||||||||
We just discussed that the journey from DNA to mRNA to protein requires that a cell identify where a gene begins and ends. This must be done both during the transcription and the translation process. | |||||||||||||||||||||||||
TranscriptionTranscription, the synthesis of an RNA copy from a sequence of DNA, is carried out by an enzyme called RNA polymerase. This molecule has the job of recognizing the DNA sequence where transcription is initiated, called the promoter site. In general, there are two "promoter" sequences upstream from the beginning of every gene. The location and base sequence of each promoter site vary for prokaryotes (bacteria) and eukaryotes (higher organisms), but they are both recognized by RNA polymerase, which can then grab hold of the sequence and drive the production of an mRNA. Eukaryotic cells have three different RNA polymerases, each recognizing three classes of genes. RNA polymerase II is responsible for synthesis of mRNAs from protein-coding genes. This polymerase requires a sequence resembling TATAA, commonly referred to as the TATA box, which is found 25-30 nucleotides upstream of the beginning of the gene, referred to as the initiator sequence. Transcription terminates when the polymerase stumbles upon a termination, or stop signal. In eukaryotes, this process is not fully understood. Prokaryotes, however, tend to have a short region composed of G's and C's that is able to fold in on itself and form complementary base pairs, creating a stem in the new mRNA. This stem then causes the polymerase to trip and release the nascent, or newly formed, mRNA. | |||||||||||||||||||||||||
TranslationThe beginning of translation, the process in which the genetic code carried by mRNA directs the synthesis of proteins from amino acids, differs slightly for prokaryotes and eukaryotes, although both processes always initiate at a codon for methionine. For prokaryotes, the ribosome recognizes and attaches at the sequence AGGAGGU on the mRNA, called the Shine-Delgarno sequence, that appears just upstream from the methionine (AUG) codon. Curiously, eukaryotes lack this recognition sequence and simply initiate translation at the amino acid methionine, usually coded for by the bases AUG, but sometimes GUG. Translation is terminated for both prokaryotes and eukaryotes when the ribosome reaches one of the three stop codons. | |||||||||||||||||||||||||
Structural Genes, Junk DNA, and Regulatory Sequences
Structural GenesSequences that code for proteins are called structural genes. Although it is true that proteins are the major components of structural elements in a cell, proteins are also the real workhorses of the cell. They perform such functions as transporting nutrients into the cell; synthesizing new DNA, RNA, and protein molecules; and transmitting chemical signals from outside to inside the cell, as well as throughout the cell—both critical to the process of making proteins. | |||||||||||||||||||||||||
Regulatory SequencesA class of sequences called regulatory sequences makes up a numerically insignificant fraction of the genome but provides critical functions. For example, certain sequences indicate the beginning and end of genes, sites for initiating replication and recombination, or provide landing sites for proteins that turn genes on and off. Like structural genes, regulatory sequences are inherited; however, they are not commonly referred to as genes. | |||||||||||||||||||||||||
Other DNA RegionsForty to forty-five percent of our genome is made up of short sequences that are repeated, sometimes hundreds of times. There are numerous forms of this "repetitive DNA", and a few have known functions, such as stabilizing the chromosome structure or inactivating one of the two X chromosomes in developing females, a process called X-inactivation. The most highly repeated sequences found so far in mammals are called "satellite DNA" because their unusual composition allows them to be easily separated from other DNA. These sequences are associated with chromosome structure and are found at the centromeres (or centers) and telomeres (ends) of chromosomes. Although they do not play a role in the coding of proteins, they do play a significant role in chromosome structure, duplication, and cell division. The highly variable nature of these sequences makes them an excellent "marker" by which individuals can be identified based on their unique pattern of their satellite DNA. | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Figure 3. A chromosome. | |||||||||||||||||||||||||
Another class of non-coding DNA is the "pseudogene", so named because it is believed to be a remnant of a real gene that has suffered mutations and is no longer functional. Pseudogenes may have arisen through the duplication of a functional gene, followed by inactivation of one of the copies. Comparing the presence or absence of pseudogenes is one method used by evolutionary geneticists to group species and to determine relatedness. Thus, these sequences are thought to carry a record of our evolutionary history. | |||||||||||||||||||||||||
How Many Genes Do Humans Have? | |||||||||||||||||||||||||
In February 2001, two largely independent draft versions of the human genome were published. Both studies estimated that there are 30,000 to 40,000 genes in the human genome, roughly one-third the number of previous estimates. More recently scientists estimated that there are less than 30,000 human genes. However, we still have to make guesses at the actual number of genes, because not all of the human genome sequence is annotated and not all of the known sequence has been assigned a particular position in the genome. So, how do scientists estimate the number of genes in a genome? For the most part, they look for tell-tale signs of genes in a DNA sequence. These include: open reading frames, stretches of DNA, usually greater than 100 bases, that are not interrupted by a stop codon such as TAA, TAG or TGA; start codons such as ATG; specific sequences found at splice junctions, a location in the DNA sequence where RNA removes the non-coding areas to form a continuous gene transcript for translation into a protein; and gene regulatory sequences. This process is dependent on computer programs that search for these patterns in various sequence databases and then make predictions about the existence of a gene. | |||||||||||||||||||||||||
From One Gene–One Protein to a More Global PerspectiveOnly a small percentage of the 3 billion bases in the human genome becomes an expressed gene product. However, of the approximately 1 percent of our genome that is expressed, 40 percent is alternatively spliced to produce multiple proteins from a single gene. Alternative splicing refers to the cutting and pasting of the primary mRNA transcript into various combinations of mature mRNA. Therefore the one gene–one protein theory, originally framed as "one gene–one enzyme", does not precisely hold. With so much DNA in the genome, why restrict transcription to a tiny portion, and why make that tiny portion work overtime to produce many alternate transcripts? This process may have evolved as a way to limit the deleterious effects of mutations. Genetic mutations occur randomly, and the effect of a small number of mutations on a single gene may be minimal. However, an individual having many genes each with small changes could weaken the individual, and thus the species. On the other hand, if a single mutation affects several alternate transcripts at once, it is more likely that the effect will be devastating—the individual may not survive to contribute to the next generation. Thus, alternate transcripts from a single gene could reduce the chances that a mutated gene is transmitted. | |||||||||||||||||||||||||
Gene Switching: Turning Genes On and OffThe estimated number of genes for humans, less than 30,000, is not so different from the 25,300 known genes of Arabidopsis thaliana, commonly called mustard grass. Yet, we appear, at least at first glance, to be a far more complex organism. A person may wonder how this increased complexity is achieved. One answer lies in the regulatory system that turns genes on and off. This system also precisely controls the amount of a gene product that is produced and can further modify the product after it is made. This exquisite control requires multiple regulatory input points. One very efficient point occurs at transcription, such that an mRNA is produced only when a gene product is needed. Cells also regulate gene expression by post-transcriptional modification; by allowing only a subset of the mRNAs to go on to translation; or by restricting translation of specific mRNAs to only when the product is needed. At other levels, cells regulate gene expression through DNA folding, chemical modification of the nucleotide bases, and intricate "feedback mechanisms" in which some of the gene's own protein product directs the cell to cease further protein production. | |||||||||||||||||||||||||
Controlling Transcription | |||||||||||||||||||||||||
Promoters and Regulatory SequencesTranscription is the process whereby RNA is made from DNA. It is initiated when an enzyme, RNA polymerase, binds to a site on the DNA called a promoter sequence. In most cases, the polymerase is aided by a group of proteins called "transcription factors" that perform specialized functions, such as DNA sequence recognition and regulation of the polymerase's enzyme activity. Other regulatory sequences include activators, repressors, and enhancers. These sequences can be cis-acting (affecting genes that are adjacent to the sequence) or trans-acting (affecting expression of the gene from a distant site), even on another chromosome. | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
The Influence of DNA Structure and Binding DomainsSequences that are important in regulating transcription do not necessarily code for transcription factors or other proteins. Transcription can also be regulated by subtle variations in DNA structure and by chemical changes in the bases to which transcription factors bind. As stated previously, the chemical properties of the four DNA bases differ slightly, providing each base with unique opportunities to chemically react with other molecules. One chemical modification of DNA, called methylation, involves the addition of a methyl group (-CH3). Methylation frequently occurs at cytosine residues that are preceded by guanine bases, oftentimes in the vicinity of promoter sequences. The methylation status of DNA often correlates with its functional activity, where inactive genes tend to be more heavily methylated. This is because the methyl group serves to inhibit transcription by attracting a protein that binds specifically to methylated DNA, thereby interfering with polymerase binding. Methylation also plays an important role in genomic imprinting, which occurs when both maternal and paternal alleles are present but only one allele is expressed while the other remains inactive. Another way to think of genomic imprinting is as "parent of origin differences" in the expression of inherited traits. Considerable intrigue surrounds the effects of DNA methylation, and many researchers are working to unlock the mystery behind this concept. | |||||||||||||||||||||||||
Controlling Translation | |||||||||||||||||||||||||
Translation is the process whereby the genetic code carried by an mRNA directs the synthesis of proteins. Translational regulation occurs through the binding of specific molecules, called repressor proteins, to a sequence found on an RNA molecule. Repressor proteins prevent a gene from being expressed. As we have just discussed, the default state for a gene is that of being expressed via the recognition of its promoter by RNA polymerase. Close to the promoter region is another cis-acting site called the operator, the target for the repressor protein. When the repressor protein binds to the operator, RNA polymerase is prevented from initiating transcription, and gene expression is turned off. Translational control plays a significant role in the process of embryonic development and cell differentiation. Upon fertilization, an egg cell begins to multiply to produce a ball of cells that are all the same. At some point, however, these cells begin to differentiate, or change into specific cell types. Some will become blood cells or kidney cells, whereas others may become nerve or brain cells. When all of the cells formed are alike, the same genes are turned on. However, once differentiation begins, various genes in different cells must become active to meet the needs of that cell type. In some organisms, the egg houses store immature mRNAs that become translationally active only after fertilization. Fertilization then serves to trigger mechanisms that initiate the efficient translation of mRNA into proteins. Similar mechanisms serve to activate mRNAs at other stages of development and differentiation, such as when specific protein products are needed. | |||||||||||||||||||||||||
Mechanisms of Genetic Variation and Heredity | |||||||||||||||||||||||||
Does Everyone Have the Same Genes?When you look at the human species, you see evidence of a process called genetic variation, that is, there are immediately recognizable differences in human traits, such as hair and eye color, skin pigment, and height. Then there are the not so obvious genetic variations, such as blood type. These expressed, or phenotypic, traits are attributable to genotypic variation in a person's DNA sequence. When two individuals display different phenotypes of the same trait, they are said to have two different alleles for the same gene. This means that the gene's sequence is slightly different in the two individuals, and the gene is said to be polymorphic, "poly" meaning many and "morph" meaning shape or form. Therefore, although people generally have the same genes, the genes do not have exactly the same DNA sequence. These polymorphic sites influence gene expression and also serve as markers for genomic research efforts. | |||||||||||||||||||||||||
Genetic Variation
Most genetic variation occurs during the phases of the cell cycle when DNA is duplicated. Mutations in the new DNA strand can manifest as base substitutions, such as when a single base gets replaced with another; deletions, where one or more bases are left out; or insertions, where one or more bases are added. Mutations can either be synonymous, in which the variation still results in a codon for the same amino acid or non-synonymous, in which the variation results in a codon for a different amino acid. Mutations can also cause a frame shift, which occurs when the variation bumps the reference point for reading the genetic code down a base or two and results in loss of part, or sometimes all, of that gene product. DNA mutations can also be introduced by toxic chemicals and, particularly in skin cells, exposure to ultraviolet radiation. | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Mutations that occur in somatic cells—any cell in the body except gametes and their precursors—will not be passed on to the next generation. This does not mean, however, that somatic cell mutations, sometimes called acquired mutations, are benign. For example, as your skin cells prepare to divide and produce new skin cells, errors may be inadvertently introduced when the DNA is duplicated, resulting in a daughter cell that contains the error. Although most defective cells die quickly, some can persist and may even become cancerous if the mutation affects the ability to regulate cell growth. | |||||||||||||||||||||||||
Mutations and the Next GenerationThere are two places where mutations can be introduced and carried into the next generation. In the first stages of development, a sperm cell and egg cell fuse. They then begin to divide, giving rise to cells that differentiate into tissue-specific cell types. One early type of differentiated cell is the germ line cell, which may ultimately develop into mature gametes. If a mutation occurs in the developing germ line cell, it may persist until that individual reaches reproductive age. Now the mutation has the potential to be passed on to the next generation. Mutations may also be introduced during meiosis, the mode of cell replication for the formation of sperm and egg cells. In this case, the germ line cell is healthy, and the mutation is introduced during the actual process of gamete replication. Once again, the sperm or egg will contain the mutation, and during the reproductive process, this mutation may then be passed on to the offspring. One should bear in mind that not all mutations are bad. Mutations also provide a species with the opportunity to adapt to new environments, as well as to protect a species from new pathogens. Mutations are what lie behind the popular saying of "survival of the fittest", the basic theory of evolution proposed by Charles Darwin in 1859. This theory proposes that as new environments arise, individuals carrying certain mutations that enable an evolutionary advantage will survive to pass this mutation on to its offspring. It does not suggest that a mutation is derived from the environment, but that survival in that environment is enhanced by a particular mutation. Some genes, and even some organisms, have evolved to tolerate mutations better than others. For example, some viral genes are known to have high mutation rates. Mutations serve the virus well by enabling adaptive traits, such as changes in the outer protein coat so that it can escape detection and thereby destruction by the host's immune system. Viruses also produce certain enzymes that are necessary for infection of a host cell. A mutation within such an enzyme may result in a new form that still allows the virus to infect its host but that is no longer blocked by an anti-viral drug. This will allow the virus to propagate freely in its environment. | |||||||||||||||||||||||||
Mendel's Laws—How We Inherit Our GenesIn 1866, Gregor Mendel studied the transmission of seven different pea traits by carefully test-crossing many distinct varieties of peas. Studying garden peas might seem trivial to those of us who live in a modern world of cloned sheep and gene transfer, but Mendel's simple approach led to fundamental insights into genetic inheritance, known today as Mendel's Laws. Mendel did not actually know or understand the cellular mechanisms that produced the results he observed. Nonetheless, he correctly surmised the behavior of traits and the mathematical predictions of their transmission, the independent segregation of alleles during gamete production, and the independent assortment of genes. Perhaps as amazing as Mendel's discoveries was the fact that his work was largely ignored by the scientific community for over 30 years! | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
How Does Inheritance Work?Our discussion here is restricted to sexually reproducing organisms where each gene in an individual is represented by two copies, called alleles—one on each chromosome pair. There may be more than two alleles, or variants, for a given gene in a population, but only two alleles can be found in an individual. Therefore, the probability that a particular allele will be inherited is 50:50, that is, alleles randomly and independently segregate into daughter cells, although there are some exceptions to this rule. The term diploid describes a state in which a cell has two sets of homologous chromosomes, or two chromosomes that are the same. The maturation of germ line stem cells into gametes requires the diploid number of each chromosome be reduced by half. Hence, gametes are said to be haploid—having only a single set of homologous chromosomes. This reduction is accomplished through a process called meiosis, where one chromosome in a diploid pair is sent to each daughter gamete. Human gametes, therefore, contain 23 chromosomes, half the number of somatic cells—all the other cells of the body. Because the chromosome in one pair separates independently of all other chromosomes, each new gamete has the potential for a totally new combination of chromosomes. In humans, the independent segregation of the 23 chromosomes can lead to as many as 16 to 17 million different combinations in one individual's gametes. Only one of these gametes will combine with one of the nearly 17 million possible combinations from the other parent, generating a staggering potential for individual variation. Yet, this is just the beginning. Even more variation is possible when you consider the recombination between sections of chromosomes during meiosis as well as the random mutation that can occur during DNA replication. With such a range of possibilities, it is amazing that siblings look so much alike! | |||||||||||||||||||||||||
Expression of Inherited GenesGene expression, as reflected in an organism's phenotype, is based on conditions specific for each copy of a gene. As we just discussed, for every human gene there are two copies, and for every gene there can be several variants or alleles. If both alleles are the same, the gene is said to be homozygous. If the alleles are different, they are said to be heterozygous. For some alleles, their influence on phenotype takes precedence over all other alleles. For others, expression depends on whether the gene appears in the homozygous or heterozygous state. Still other phenotypic traits are a combination of several alleles from several different genes. Determining the allelic condition used to be accomplished solely through the analysis of pedigrees, much the way Mendel carried out his experiments on peas. However, this method can leave many questions unanswered, particularly for traits that are a result of the interaction between several different genes. Today, molecular genetic techniques exist that can assist researchers in tracking the transmission of traits by pinpointing the location of individual genes, identifying allelic variants, and identifying those traits that are caused by multiple genes. | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Exceptions to Mendel's LawsThere are many examples of inheritance that appear to be exceptions to Mendel's laws. Usually, they turn out to represent complex interactions among various allelic conditions. For example, co-dominant alleles both contribute to a phenotype. Neither is dominant over the other. Control of the human blood group system provides a good example of co-dominant alleles. | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Pleiotropism, or pleotrophy, refers to the phenomenon in which a single gene is responsible for producing multiple, distinct, and apparently unrelated phenotypic traits, that is, an individual can exhibit many different phenotypic outcomes. This is because the gene product is active in many places in the body. An example is Marfan's syndrome, where there is a defect in the gene coding for a connective tissue protein. Individuals with Marfan's syndrome exhibit abnormalities in their eyes, skeletal system, and cardiovascular system. Some genes mask the expression of other genes just as a fully dominant allele masks the expression of its recessive counterpart. A gene that masks the phenotypic effect of another gene is called an epistatic gene; the gene it subordinates is the hypostatic gene. The gene for albinism in humans is an epistatic gene. It is not part of the interacting skin-color genes. Rather, its dominant allele is necessary for the development of any skin pigment, and its recessive homozygous state results in the albino condition, regardless of how many other pigment genes may be present. Because of the effects of an epistatic gene, some individuals who inherit the dominant, disease-causing gene show only partial symptoms of the disease. Some, in fact, may show no expression of the disease-causing gene, a condition referred to as nonpenetrance. The individual in whom such a nonpenetrant mutant gene exists will be phenotypically normal but still capable of passing the deleterious gene on to offspring, who may exhibit the full-blown disease. Then we have traits that are multigenic, that is, they result from the expression of several different genes. This is true for human eye color, in which at least three different genes are responsible for determining eye color. A brown/blue gene and a central brown gene are both found on chromosome 15, whereas a green/blue gene is found on chromosome 19. The interaction between these genes is not well understood. It is speculated that there may be other genes that control other factors, such as the amount of pigment deposited in the iris. This multigenic system explains why two blue-eyed individuals can have a brown-eyed child. Speaking of eye color, have you ever seen someone with one green eye and one brown eye? In this case, somatic mosaicism may be the culprit. This is probably easier to describe than explain. In multicellular organisms, every cell in the adult is ultimately derived from the single-cell fertilized egg. Therefore, every cell in the adult normally carries the same genetic information. However, what would happen if a mutation occurred in only one cell at the two-cell stage of development? Then the adult would be composed of two types of cells: cells with the mutation and cells without. If a mutation affecting melanin production occurred in one of the cells in the cell lineage of one eye but not the other, then the eyes would have different genetic potential for melanin synthesis. This could produce eyes of two different colors. Penetrance refers to the degree to which a particular allele is expressed in a population phenotype. If every individual carrying a dominant mutant gene demonstrates the mutant phenotype, the gene is said to show complete penetrance. | |||||||||||||||||||||||||
Molecular Genetics: The Study of Heredity, Genes, and DNAAs we have just learned, DNA provides a blueprint that directs all cellular activities and specifies the developmental plan of multicellular organisms. Therefore, an understanding of DNA, gene structure, and function is fundamental for an appreciation of the molecular biology of the cell. Yet, it is important to recognize that progress in any scientific field depends on the availability of experimental tools that allow researchers to make new scientific observations and conduct novel experiments. The last section of the genetic primer concludes with a discussion of some of the laboratory tools and technologies that allow researchers to study cells and their DNA. | |||||||||||||||||||||||||